L(s) = 1 | − 2·2-s + 2·4-s − 4·16-s + 20·31-s + 8·32-s − 8·37-s − 20·41-s − 8·43-s + 10·49-s + 20·53-s − 40·62-s − 8·64-s + 24·67-s + 8·71-s + 16·74-s + 28·79-s + 40·82-s + 16·86-s + 28·89-s − 20·98-s − 40·106-s + 8·107-s + 6·121-s + 40·124-s + 127-s + 131-s − 48·134-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s − 16-s + 3.59·31-s + 1.41·32-s − 1.31·37-s − 3.12·41-s − 1.21·43-s + 10/7·49-s + 2.74·53-s − 5.08·62-s − 64-s + 2.93·67-s + 0.949·71-s + 1.85·74-s + 3.15·79-s + 4.41·82-s + 1.72·86-s + 2.96·89-s − 2.02·98-s − 3.88·106-s + 0.773·107-s + 6/11·121-s + 3.59·124-s + 0.0887·127-s + 0.0873·131-s − 4.14·134-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.150334092\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.150334092\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.504041210953711452785053752026, −8.955750880233050644799054358833, −8.556931648356278760796873431491, −8.483569424605351984240226881498, −8.000734293444069891685454085074, −7.77437763045920858236412704244, −7.03332896996346459011721589276, −6.69941590542705702055565363209, −6.66964371321994701711000277632, −6.09366863299577260243773139382, −5.31685897684416891293912152927, −4.90514381391068282436888010427, −4.82731580885088582726356494480, −3.84606910745892863725119344012, −3.65489764580763467517637586164, −2.93566468355957178072076468554, −2.16886502622145289990205553817, −2.05245409785064956536834752044, −0.997627698734400598114201951715, −0.63920498381537213360836920468,
0.63920498381537213360836920468, 0.997627698734400598114201951715, 2.05245409785064956536834752044, 2.16886502622145289990205553817, 2.93566468355957178072076468554, 3.65489764580763467517637586164, 3.84606910745892863725119344012, 4.82731580885088582726356494480, 4.90514381391068282436888010427, 5.31685897684416891293912152927, 6.09366863299577260243773139382, 6.66964371321994701711000277632, 6.69941590542705702055565363209, 7.03332896996346459011721589276, 7.77437763045920858236412704244, 8.000734293444069891685454085074, 8.483569424605351984240226881498, 8.556931648356278760796873431491, 8.955750880233050644799054358833, 9.504041210953711452785053752026