L(s) = 1 | + 3·3-s − 6·5-s + 7-s + 3·9-s + 4·11-s − 5·13-s − 18·15-s − 2·17-s − 4·19-s + 3·21-s − 23-s + 17·25-s + 2·29-s − 20·31-s + 12·33-s − 6·35-s − 4·37-s − 15·39-s − 12·41-s − 18·45-s + 20·47-s − 6·51-s − 8·53-s − 24·55-s − 12·57-s + 9·59-s − 13·61-s + ⋯ |
L(s) = 1 | + 1.73·3-s − 2.68·5-s + 0.377·7-s + 9-s + 1.20·11-s − 1.38·13-s − 4.64·15-s − 0.485·17-s − 0.917·19-s + 0.654·21-s − 0.208·23-s + 17/5·25-s + 0.371·29-s − 3.59·31-s + 2.08·33-s − 1.01·35-s − 0.657·37-s − 2.40·39-s − 1.87·41-s − 2.68·45-s + 2.91·47-s − 0.840·51-s − 1.09·53-s − 3.23·55-s − 1.58·57-s + 1.17·59-s − 1.66·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2119936 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2119936 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6210705780\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6210705780\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13213804910786260290176379548, −9.053432103286485331822425981631, −8.794012175979894117326943356371, −8.580426624740774002663258894686, −8.196739503927126331638371543454, −7.63935688462243273270055874365, −7.45016227287831454229440498385, −7.17333273231704129238110152830, −6.91907875715317599664719444575, −6.09256400202071666107587540515, −5.52315674764975307326848703611, −4.68532767160475585495357682065, −4.58313695244184402398234125030, −3.95854964706499578510428948131, −3.60796688827687417625254896040, −3.48964050612418510707632875488, −2.79593724146405308864962774541, −2.14528626285176441161686418426, −1.66203658693301302072053290249, −0.27122956379667115505741788950,
0.27122956379667115505741788950, 1.66203658693301302072053290249, 2.14528626285176441161686418426, 2.79593724146405308864962774541, 3.48964050612418510707632875488, 3.60796688827687417625254896040, 3.95854964706499578510428948131, 4.58313695244184402398234125030, 4.68532767160475585495357682065, 5.52315674764975307326848703611, 6.09256400202071666107587540515, 6.91907875715317599664719444575, 7.17333273231704129238110152830, 7.45016227287831454229440498385, 7.63935688462243273270055874365, 8.196739503927126331638371543454, 8.580426624740774002663258894686, 8.794012175979894117326943356371, 9.053432103286485331822425981631, 10.13213804910786260290176379548