Properties

Label 2.3.ad_g
Base Field $\F_{3}$
Dimension $2$
Ordinary No
$p$-rank $0$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $2$
L-polynomial:  $( 1 - 3 x + 3 x^{2} )( 1 + 3 x^{2} )$
Frobenius angles:  $\pm0.166666666667$, $\pm0.5$
Angle rank:  $0$ (numerical)
Jacobians:  1

This isogeny class is not simple.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 4 112 784 5824 66124 614656 4964572 42515200 387459856 3501133552

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 1 13 28 73 271 838 2269 6481 19684 59293

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The isogeny class factors as 1.3.ad $\times$ 1.3.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{6}}$ is 1.729.cc 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $3$ and $\infty$.
All geometric endomorphisms are defined over $\F_{3^{6}}$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
2.3.ag_p$3$2.27.a_cc
2.3.a_ad$3$2.27.a_cc
2.3.a_g$3$2.27.a_cc
2.3.d_g$3$2.27.a_cc
2.3.g_p$3$2.27.a_cc
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.3.ag_p$3$2.27.a_cc
2.3.a_ad$3$2.27.a_cc
2.3.a_g$3$2.27.a_cc
2.3.d_g$3$2.27.a_cc
2.3.g_p$3$2.27.a_cc
2.3.a_ad$6$2.729.ee_gmg
2.3.a_ag$12$(not in LMFDB)
2.3.a_d$12$(not in LMFDB)
2.3.a_a$24$(not in LMFDB)