Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 12 x + 103 x^{2} + 492 x^{3} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.553114902371$, $\pm0.780218430963$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{-5})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $70$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2289$ | $2932209$ | $4715568900$ | $7986284652969$ | $13422132300973809$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $1744$ | $68418$ | $2826244$ | $115851654$ | $4750252918$ | $194753568294$ | $7984919809924$ | $327382006596498$ | $13422659099124304$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 70 curves (of which all are hyperelliptic):
- $y^2=26 x^6+8 x^5+6 x^4+27 x^3+28 x^2+25 x+26$
- $y^2=20 x^6+37 x^5+31 x^4+20 x^3+16 x^2+19 x+29$
- $y^2=40 x^6+31 x^5+22 x^4+25 x^3+25 x^2+40 x+2$
- $y^2=28 x^6+31 x^5+34 x^4+23 x^3+36 x^2+35 x+14$
- $y^2=2 x^6+9 x^5+16 x^4+39 x^3+32 x^2+18 x+10$
- $y^2=8 x^6+31 x^5+27 x^4+24 x^3+8 x^2+x+1$
- $y^2=4 x^6+5 x^5+33 x^4+12 x^3+3 x^2+28 x+39$
- $y^2=23 x^6+38 x^5+14 x^4+24 x^3+25 x^2+32 x+26$
- $y^2=x^6+40 x^5+14 x^4+6 x^3+5 x^2+30 x+33$
- $y^2=5 x^6+27 x^5+13 x^4+27 x^3+3 x^2+36 x+7$
- $y^2=30 x^6+26 x^5+16 x^4+30 x^3+5 x^2+25 x+4$
- $y^2=20 x^6+17 x^5+22 x^4+18 x^3+39 x^2+25 x+2$
- $y^2=12 x^6+27 x^5+11 x^4+22 x^3+13 x^2+32 x+36$
- $y^2=8 x^6+16 x^5+31 x^4+12 x^3+24 x^2+21 x+1$
- $y^2=24 x^6+4 x^5+28 x^4+19 x^3+3 x^2+15 x+20$
- $y^2=25 x^6+31 x^5+13 x^4+33 x^3+8 x^2+16 x+4$
- $y^2=15 x^6+7 x^5+15 x^3+7 x^2+30 x+33$
- $y^2=3 x^6+21 x^5+24 x^4+11 x^3+32 x^2+33 x+8$
- $y^2=8 x^6+6 x^5+26 x^4+34 x^3+15 x^2+26 x+11$
- $y^2=2 x^6+8 x^5+18 x^4+40 x^3+18 x^2+21 x+27$
- and 50 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{3}}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-5})\). |
| The base change of $A$ to $\F_{41^{3}}$ is 1.68921.ajs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5}) \)$)$ |
Base change
This is a primitive isogeny class.