# Stored data for abelian variety isogeny class 2.41.m_dz, downloaded from the LMFDB on 19 December 2025. {"abvar_count": 2289, "abvar_counts": [2289, 2932209, 4715568900, 7986284652969, 13422132300973809, 22564196541890816400, 37929089778940059101409, 63758987642783605320682569, 107178954605339646251452752900, 180167780123862696289775197218609], "abvar_counts_str": "2289 2932209 4715568900 7986284652969 13422132300973809 22564196541890816400 37929089778940059101409 63758987642783605320682569 107178954605339646251452752900 180167780123862696289775197218609 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.553114902370788, 0.780218430962546], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 54, "curve_counts": [54, 1744, 68418, 2826244, 115851654, 4750252918, 194753568294, 7984919809924, 327382006596498, 13422659099124304], "curve_counts_str": "54 1744 68418 2826244 115851654 4750252918 194753568294 7984919809924 327382006596498 13422659099124304 ", "curves": ["y^2=26*x^6+8*x^5+6*x^4+27*x^3+28*x^2+25*x+26", "y^2=20*x^6+37*x^5+31*x^4+20*x^3+16*x^2+19*x+29", "y^2=40*x^6+31*x^5+22*x^4+25*x^3+25*x^2+40*x+2", "y^2=28*x^6+31*x^5+34*x^4+23*x^3+36*x^2+35*x+14", "y^2=2*x^6+9*x^5+16*x^4+39*x^3+32*x^2+18*x+10", "y^2=8*x^6+31*x^5+27*x^4+24*x^3+8*x^2+x+1", "y^2=4*x^6+5*x^5+33*x^4+12*x^3+3*x^2+28*x+39", "y^2=23*x^6+38*x^5+14*x^4+24*x^3+25*x^2+32*x+26", "y^2=x^6+40*x^5+14*x^4+6*x^3+5*x^2+30*x+33", "y^2=5*x^6+27*x^5+13*x^4+27*x^3+3*x^2+36*x+7", "y^2=30*x^6+26*x^5+16*x^4+30*x^3+5*x^2+25*x+4", "y^2=20*x^6+17*x^5+22*x^4+18*x^3+39*x^2+25*x+2", "y^2=12*x^6+27*x^5+11*x^4+22*x^3+13*x^2+32*x+36", "y^2=8*x^6+16*x^5+31*x^4+12*x^3+24*x^2+21*x+1", "y^2=24*x^6+4*x^5+28*x^4+19*x^3+3*x^2+15*x+20", "y^2=25*x^6+31*x^5+13*x^4+33*x^3+8*x^2+16*x+4", "y^2=15*x^6+7*x^5+15*x^3+7*x^2+30*x+33", "y^2=3*x^6+21*x^5+24*x^4+11*x^3+32*x^2+33*x+8", "y^2=8*x^6+6*x^5+26*x^4+34*x^3+15*x^2+26*x+11", "y^2=2*x^6+8*x^5+18*x^4+40*x^3+18*x^2+21*x+27", "y^2=37*x^6+5*x^5+x^4+4*x^3+32*x^2+14*x+37", "y^2=36*x^6+38*x^5+32*x^4+10*x^3+28*x^2+33*x+23", "y^2=29*x^6+35*x^5+17*x^4+39*x^3+22*x^2+15*x+33", "y^2=18*x^6+23*x^5+30*x^4+18*x^3+11*x^2+17*x+38", "y^2=15*x^6+23*x^5+25*x^4+7*x^3+40*x^2+19*x+25", "y^2=23*x^6+4*x^5+31*x^4+20*x^3+34*x^2+3*x+30", "y^2=26*x^6+29*x^5+38*x^4+9*x^3+24*x^2+21*x+16", "y^2=36*x^6+25*x^4+24*x^3+34*x^2+24*x+26", "y^2=39*x^6+32*x^5+30*x^4+22*x^3+38*x^2+11*x+10", "y^2=17*x^6+19*x^5+32*x^4+26*x^3+22*x^2+35*x+38", "y^2=30*x^6+26*x^5+5*x^4+21*x^3+6*x^2+28*x+25", "y^2=36*x^6+33*x^5+12*x^4+39*x^3+5*x^2+x+39", "y^2=18*x^6+16*x^5+30*x^4+6*x^3+28*x^2+36*x+21", "y^2=38*x^6+35*x^5+30*x^4+15*x^3+5*x^2+10*x+4", "y^2=30*x^6+40*x^5+16*x^4+7*x^3+40*x^2+29*x+17", "y^2=25*x^6+20*x^5+23*x^4+35*x^3+3*x^2+9*x+16", "y^2=31*x^6+36*x^5+34*x^4+7*x^3+x^2+21*x+13", "y^2=18*x^6+7*x^5+27*x^4+18*x^3+29*x^2+35*x+4", "y^2=3*x^6+37*x^5+23*x^4+32*x^3+7*x^2+20*x+33", "y^2=9*x^6+35*x^5+22*x^4+6*x^3+14*x^2+22*x+13", "y^2=9*x^6+18*x^5+26*x^4+39*x^3+20*x^2+15*x+30", "y^2=31*x^6+38*x^5+22*x^4+13*x^3+15*x^2+22*x+10", "y^2=36*x^6+3*x^5+15*x^4+13*x^3+22*x^2+18*x+18", "y^2=40*x^6+9*x^5+7*x^4+30*x^3+33*x^2+36*x+16", "y^2=4*x^6+15*x^5+16*x^4+40*x^3+16*x^2+30*x+17", "y^2=40*x^6+12*x^5+4*x^4+27*x^3+6*x^2+37*x+10", "y^2=21*x^6+25*x^5+24*x^4+21*x^3+6*x^2+23*x+39", "y^2=27*x^6+5*x^5+37*x^4+36*x^3+7*x^2+5*x+21", "y^2=32*x^6+29*x^4+39*x^3+26*x^2+39*x+27", "y^2=4*x^6+13*x^5+17*x^4+40*x^3+4*x^2+7*x+37", "y^2=14*x^6+14*x^5+9*x^4+3*x^3+26*x^2+25*x+36", "y^2=32*x^6+19*x^5+40*x^4+18*x^3+15*x^2+9*x+32", "y^2=19*x^6+x^5+30*x^4+20*x^3+23*x^2+38*x+20", "y^2=24*x^6+x^5+27*x^4+15*x^3+31*x^2+23*x+23", "y^2=21*x^6+19*x^5+28*x^4+11*x^3+32*x^2+2*x+31", "y^2=19*x^6+39*x^5+24*x^4+14*x^3+22*x^2+15*x+24", "y^2=19*x^6+39*x^5+8*x^4+37*x^3+20*x^2+x+39", "y^2=18*x^6+3*x^5+24*x^4+26*x^3+8*x^2+32*x+37", "y^2=9*x^6+6*x^5+22*x^4+39*x^3+36*x^2+31*x+1", "y^2=8*x^6+x^5+39*x^4+14*x^3+12*x+9", "y^2=25*x^6+3*x^5+11*x^4+26*x^3+22*x^2+34*x+4", "y^2=16*x^6+17*x^5+33*x^4+15*x^3+15*x^2+19*x+9", "y^2=38*x^6+33*x^5+13*x^3+30*x^2+18*x+33", "y^2=37*x^6+15*x^5+25*x^4+30*x^3+10*x^2+30*x+36", "y^2=13*x^6+27*x^5+33*x^4+20*x^3+29*x^2+21*x+39", "y^2=14*x^6+19*x^5+14*x^4+17*x^3+5*x^2+21*x+32", "y^2=39*x^6+17*x^5+8*x^4+25*x^3+14*x^2+15*x+11", "y^2=10*x^6+12*x^5+20*x^4+9*x^3+14*x^2+22*x+32", "y^2=32*x^6+15*x^5+8*x^4+8*x^3+18*x^2+22*x+1", "y^2=6*x^6+32*x^5+21*x^4+33*x^3+28*x^2+36*x+37"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 2, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 3, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.20.1"], "geometric_splitting_field": "2.0.20.1", "geometric_splitting_polynomials": [[5, 0, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 70, "is_cyclic": true, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 70, "label": "2.41.m_dz", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "noncyclic_primes": [], "number_fields": ["4.0.3600.3"], "p": 41, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 12, 103, 492, 1681], "poly_str": "1 12 103 492 1681 ", "primitive_models": [], "q": 41, "real_poly": [1, 12, 21], "simple_distinct": ["2.41.m_dz"], "simple_factors": ["2.41.m_dzA"], "simple_multiplicities": [1], "singular_primes": ["103,F^2-84*F-42*V-523"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.3600.3", "splitting_polynomials": [[25, 0, -5, 0, 1]], "twist_count": 6, "twists": [["2.41.am_dz", "2.1681.ck_dff", 2], ["2.41.ay_is", "2.68921.atk_llwc", 3], ["2.41.a_ack", "2.4750104241.ilyi_bwqsdnoo", 6], ["2.41.y_is", "2.4750104241.ilyi_bwqsdnoo", 6], ["2.41.a_ck", "2.22563490300366186081.zsyxogq_yojyvztlqzetgo", 12]], "weak_equivalence_count": 2, "zfv_index": 103, "zfv_index_factorization": [[103, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 10609, "zfv_singular_count": 2, "zfv_singular_primes": ["103,F^2-84*F-42*V-523"]}