| L(s) = 1 | − 2-s + 3-s − 6-s + 7-s + 8-s + 8·13-s − 14-s − 16-s + 3·17-s − 2·19-s + 21-s + 3·23-s + 24-s − 8·26-s − 27-s + 31-s − 3·34-s − 10·37-s + 2·38-s + 8·39-s − 18·41-s − 42-s + 20·43-s − 3·46-s − 3·47-s − 48-s − 6·49-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 0.577·3-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 2.21·13-s − 0.267·14-s − 1/4·16-s + 0.727·17-s − 0.458·19-s + 0.218·21-s + 0.625·23-s + 0.204·24-s − 1.56·26-s − 0.192·27-s + 0.179·31-s − 0.514·34-s − 1.64·37-s + 0.324·38-s + 1.28·39-s − 2.81·41-s − 0.154·42-s + 3.04·43-s − 0.442·46-s − 0.437·47-s − 0.144·48-s − 6/7·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1102500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1102500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.940690661\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.940690661\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.10947634376912323818998725279, −9.537207033385270312146700296465, −9.194788683131538717220925477104, −8.865427652376597717908154681584, −8.467758320623969617667404430442, −8.127967439321144871985449707932, −7.951339805013917945808944643196, −7.30719702755385735801769452971, −6.78803349871044685627675805169, −6.43220105404141490793815228352, −5.96979657446936058243490264008, −5.22342493064881479518599758423, −5.16708892597076743679681653307, −4.14743461463550331514805346172, −3.97401909643869250000007308463, −3.21278390591509335972729746712, −3.01674915501339647834972413811, −1.84949279886908347444584635255, −1.58704811676151821398371958723, −0.73073652076445170815064283498,
0.73073652076445170815064283498, 1.58704811676151821398371958723, 1.84949279886908347444584635255, 3.01674915501339647834972413811, 3.21278390591509335972729746712, 3.97401909643869250000007308463, 4.14743461463550331514805346172, 5.16708892597076743679681653307, 5.22342493064881479518599758423, 5.96979657446936058243490264008, 6.43220105404141490793815228352, 6.78803349871044685627675805169, 7.30719702755385735801769452971, 7.951339805013917945808944643196, 8.127967439321144871985449707932, 8.467758320623969617667404430442, 8.865427652376597717908154681584, 9.194788683131538717220925477104, 9.537207033385270312146700296465, 10.10947634376912323818998725279