L(s) = 1 | + 2·5-s − 3·7-s + 3·9-s − 3·11-s − 7·13-s + 4·17-s + 7·19-s − 4·23-s + 3·25-s + 8·29-s + 20·31-s − 6·35-s − 3·37-s + 2·41-s + 6·43-s + 6·45-s + 2·47-s + 7·49-s − 18·53-s − 6·55-s − 4·59-s + 14·61-s − 9·63-s − 14·65-s + 4·67-s + 6·71-s + 8·73-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 1.13·7-s + 9-s − 0.904·11-s − 1.94·13-s + 0.970·17-s + 1.60·19-s − 0.834·23-s + 3/5·25-s + 1.48·29-s + 3.59·31-s − 1.01·35-s − 0.493·37-s + 0.312·41-s + 0.914·43-s + 0.894·45-s + 0.291·47-s + 49-s − 2.47·53-s − 0.809·55-s − 0.520·59-s + 1.79·61-s − 1.13·63-s − 1.73·65-s + 0.488·67-s + 0.712·71-s + 0.936·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.183355377\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.183355377\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.900096912838660520424409182755, −9.828803287047650627160180626082, −9.633045943457412736749359149404, −9.174127321069994995867871803631, −8.264873616973091332588064471588, −8.067446308438749830899649893147, −7.67134612970128390849417748114, −7.10228348192114430904729985552, −6.77431777862100081282101146224, −6.43425235774601177400295620642, −5.79759526651364542510291869715, −5.47325668756707026351300984270, −4.76110135074437241919592529354, −4.74128519240617665761652416027, −3.96381096315618940633706225952, −3.11832468131058604268564139473, −2.62234119848420678874917353043, −2.61954838010685489440722603534, −1.43219173246558327857857503143, −0.70755527216395934544313643734,
0.70755527216395934544313643734, 1.43219173246558327857857503143, 2.61954838010685489440722603534, 2.62234119848420678874917353043, 3.11832468131058604268564139473, 3.96381096315618940633706225952, 4.74128519240617665761652416027, 4.76110135074437241919592529354, 5.47325668756707026351300984270, 5.79759526651364542510291869715, 6.43425235774601177400295620642, 6.77431777862100081282101146224, 7.10228348192114430904729985552, 7.67134612970128390849417748114, 8.067446308438749830899649893147, 8.264873616973091332588064471588, 9.174127321069994995867871803631, 9.633045943457412736749359149404, 9.828803287047650627160180626082, 9.900096912838660520424409182755