Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 16 x + 159 x^{2} + 1552 x^{3} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.468438856296$, $\pm0.864894477038$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{11})\) |
Galois group: | $C_2^2$ |
Jacobians: | $254$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $11137$ | $89107137$ | $833996338756$ | $7836108092599689$ | $73740821790222677377$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $114$ | $9472$ | $913794$ | $88514308$ | $8587154994$ | $832975028422$ | $80798278260786$ | $7837433641539076$ | $760231055939215938$ | $73742412706640895232$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 254 curves (of which all are hyperelliptic):
- $y^2=19 x^6+37 x^5+43 x^4+77 x^3+41 x^2+4 x+94$
- $y^2=53 x^6+76 x^5+73 x^4+40 x^2+54 x+80$
- $y^2=86 x^6+81 x^4+64 x^3+33 x^2+22 x+21$
- $y^2=24 x^6+76 x^5+4 x^4+41 x^3+96 x^2+57 x+63$
- $y^2=44 x^6+3 x^5+50 x^4+70 x^3+12 x^2+48 x+41$
- $y^2=40 x^6+75 x^5+61 x^4+17 x^3+28 x^2+76 x+11$
- $y^2=44 x^6+57 x^5+10 x^4+24 x^3+69 x^2+51 x+55$
- $y^2=8 x^6+81 x^5+58 x^4+91 x^3+96 x^2+94 x+11$
- $y^2=96 x^6+32 x^5+50 x^4+39 x^3+63 x^2+81 x+3$
- $y^2=57 x^6+24 x^5+88 x^4+61 x^2+63 x+21$
- $y^2=54 x^6+51 x^5+87 x^4+96 x^3+88 x^2+69 x+18$
- $y^2=5 x^6+90 x^5+57 x^4+13 x^3+90 x^2+38 x+10$
- $y^2=45 x^6+11 x^5+43 x^4+28 x^3+43 x^2+46 x+38$
- $y^2=18 x^6+60 x^5+74 x^4+32 x^3+18 x^2+39 x+32$
- $y^2=24 x^6+39 x^5+43 x^4+55 x^3+15 x^2+48 x+94$
- $y^2=51 x^6+4 x^5+17 x^4+56 x^3+81 x^2+53 x+28$
- $y^2=81 x^6+85 x^5+48 x^4+53 x^3+62 x^2+18 x+91$
- $y^2=20 x^6+40 x^5+25 x^4+30 x^3+65 x^2+78 x+36$
- $y^2=24 x^6+83 x^5+60 x^4+34 x^3+55 x^2+63 x+61$
- $y^2=12 x^6+44 x^5+56 x^4+15 x^3+69 x^2+28 x+2$
- and 234 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{3}}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{11})\). |
The base change of $A$ to $\F_{97^{3}}$ is 1.912673.vo 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-33}) \)$)$ |
Base change
This is a primitive isogeny class.