L(s) = 1 | − 5-s − 4·7-s − 3·9-s − 3·11-s − 13-s − 3·17-s + 5·19-s + 23-s + 5·25-s − 9·29-s − 8·31-s + 4·35-s − 5·37-s − 7·41-s + 3·43-s + 3·45-s − 16·47-s + 9·49-s − 9·53-s + 3·55-s + 8·59-s + 4·61-s + 12·63-s + 65-s − 24·67-s − 16·71-s + 13·73-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 1.51·7-s − 9-s − 0.904·11-s − 0.277·13-s − 0.727·17-s + 1.14·19-s + 0.208·23-s + 25-s − 1.67·29-s − 1.43·31-s + 0.676·35-s − 0.821·37-s − 1.09·41-s + 0.457·43-s + 0.447·45-s − 2.33·47-s + 9/7·49-s − 1.23·53-s + 0.404·55-s + 1.04·59-s + 0.512·61-s + 1.51·63-s + 0.124·65-s − 2.93·67-s − 1.89·71-s + 1.52·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1016064 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1016064 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.640813084017751884046979873691, −9.293786222245745217116822390839, −9.082907810347376959998651048511, −8.489639522096411240271802810640, −8.225002472532366261414108130122, −7.50533697208485644202273568578, −7.13374651509719037938873481749, −7.07852226127769372973605577338, −6.12914338337346937117504245595, −6.08625612207211162835708968721, −5.35878937451834078505323644327, −5.08296974785184007746066599780, −4.54339003012016005954261696100, −3.65707512955832332916819981104, −3.30769056500662343019213428366, −3.06459731335624296264540224880, −2.38635645349822569884973618318, −1.56125568281334883019518887480, 0, 0,
1.56125568281334883019518887480, 2.38635645349822569884973618318, 3.06459731335624296264540224880, 3.30769056500662343019213428366, 3.65707512955832332916819981104, 4.54339003012016005954261696100, 5.08296974785184007746066599780, 5.35878937451834078505323644327, 6.08625612207211162835708968721, 6.12914338337346937117504245595, 7.07852226127769372973605577338, 7.13374651509719037938873481749, 7.50533697208485644202273568578, 8.225002472532366261414108130122, 8.489639522096411240271802810640, 9.082907810347376959998651048511, 9.293786222245745217116822390839, 9.640813084017751884046979873691