Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 13 x + 86 x^{2} + 1079 x^{3} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.419543117412$, $\pm0.913790215921$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-163})\) |
Galois group: | $C_2^2$ |
Jacobians: | $43$ |
Isomorphism classes: | 30 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8068$ | $47472112$ | $328131917584$ | $2251638920630464$ | $15515676133386075148$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $97$ | $6893$ | $573868$ | $47444553$ | $3938947967$ | $326940497318$ | $27136057876157$ | $2252292326807761$ | $186940253949317524$ | $15516041187916798493$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 43 curves (of which all are hyperelliptic):
- $y^2=40 x^6+58 x^5+73 x^4+39 x^3+50 x^2+66$
- $y^2=20 x^6+71 x^5+43 x^4+76 x^3+25 x^2+9 x+28$
- $y^2=8 x^6+21 x^5+29 x^4+51 x^3+37 x^2+20 x+29$
- $y^2=78 x^6+70 x^5+3 x^4+4 x^3+61 x^2+27 x+68$
- $y^2=40 x^6+15 x^5+82 x^4+25 x^3+47 x^2+8 x+51$
- $y^2=25 x^6+x^5+31 x^4+53 x^3+10 x^2+48 x+10$
- $y^2=77 x^6+78 x^5+28 x^4+30 x^3+36 x^2+47 x+33$
- $y^2=71 x^6+11 x^5+66 x^4+73 x^3+31 x^2+4 x+52$
- $y^2=65 x^6+33 x^5+15 x^4+55 x^3+61 x^2+8 x+16$
- $y^2=68 x^6+4 x^5+39 x^4+69 x^3+4 x^2+52 x+62$
- $y^2=30 x^6+31 x^5+33 x^4+68 x^3+43 x^2+40 x+61$
- $y^2=73 x^6+67 x^5+28 x^4+37 x^3+73 x^2+49 x+56$
- $y^2=12 x^6+62 x^5+22 x^4+71 x^3+49 x^2+79 x+44$
- $y^2=42 x^6+82 x^5+7 x^4+56 x^3+63 x^2+9 x+11$
- $y^2=11 x^6+77 x^5+61 x^4+2 x^3+65 x^2+23 x+71$
- $y^2=30 x^6+11 x^5+76 x^4+6 x^3+28 x^2+65 x$
- $y^2=65 x^6+18 x^5+67 x^4+77 x^3+77 x^2+26 x+77$
- $y^2=19 x^6+72 x^5+58 x^4+36 x^3+74 x^2+72 x+58$
- $y^2=50 x^6+38 x^5+2 x^4+45 x^3+56 x^2+23 x+10$
- $y^2=70 x^6+46 x^5+72 x^3+64 x^2+70 x+77$
- and 23 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{3}}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-163})\). |
The base change of $A$ to $\F_{83^{3}}$ is 1.571787.boa 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-163}) \)$)$ |
Base change
This is a primitive isogeny class.