Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 5 x - 12 x^{2} + 185 x^{3} + 1369 x^{4}$ |
| Frobenius angles: | $\pm0.301486164513$, $\pm0.968152831180$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{41})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $10$ |
| Isomorphism classes: | 18 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1548$ | $1808064$ | $2609575056$ | $3511846100736$ | $4809570923227068$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $43$ | $1321$ | $51514$ | $1873825$ | $69358183$ | $2565559222$ | $94931768779$ | $3512475819169$ | $129961768124338$ | $4808584436080561$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=11 x^6+18 x^5+18 x^4+11 x^3+18 x^2+25 x$
- $y^2=26 x^6+30 x^5+9 x^4+36 x^3+23 x^2+25 x+18$
- $y^2=8 x^6+24 x^5+9 x^4+3 x^3+4 x^2+x+33$
- $y^2=16 x^6+18 x^5+18 x^4+29 x^3+29 x^2+20 x+18$
- $y^2=20 x^5+6 x^4+33 x^3+29 x+5$
- $y^2=28 x^6+33 x^5+27 x^4+36 x^3+18 x^2+3 x+31$
- $y^2=8 x^6+19 x^5+20 x^4+7 x^3+x+36$
- $y^2=x^6+17 x^5+32 x^4+31 x^3+17 x^2+14 x+25$
- $y^2=x^6+x^3+7$
- $y^2=19 x^6+7 x^5+6 x^4+11 x^3+29 x^2+25 x+14$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{3}}$.
Endomorphism algebra over $\F_{37}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{41})\). |
| The base change of $A$ to $\F_{37^{3}}$ is 1.50653.qo 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-123}) \)$)$ |
Base change
This is a primitive isogeny class.