Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - x - 22 x^{2} - 23 x^{3} + 529 x^{4}$ |
| Frobenius angles: | $\pm0.133420151237$, $\pm0.800086817904$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{-91})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $10$ |
| Isomorphism classes: | 40 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 11$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $484$ | $257488$ | $146410000$ | $78582247744$ | $41410220796604$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $23$ | $485$ | $12032$ | $280809$ | $6433813$ | $148075310$ | $3404903371$ | $78311360689$ | $1801156996736$ | $41426504746925$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=6 x^5+9 x^4+5 x^3+8 x+18$
- $y^2=7 x^6+3 x^5+16 x^4+21 x^3+18 x^2+3 x$
- $y^2=4 x^6+2 x^5+x^4+10 x^2+4 x+14$
- $y^2=6 x^6+2 x^5+19 x^4+8 x^3+7 x^2+13 x+14$
- $y^2=3 x^6+20 x^5+3 x^4+6 x^3+4 x^2+12 x+16$
- $y^2=14 x^6+12 x^5+22 x^4+18 x^3+18 x^2+9 x+22$
- $y^2=3 x^6+18 x^4+12 x^3+6 x^2+8 x$
- $y^2=11 x^6+3 x^5+17 x^4+21 x^3+17 x^2+9$
- $y^2=17 x^6+15 x^5+7 x^4+x^3+15 x^2+18 x+20$
- $y^2=18 x^6+2 x^5+9 x^4+9 x^3+14 x^2+21 x+17$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{3}}$.
Endomorphism algebra over $\F_{23}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-91})\). |
| The base change of $A$ to $\F_{23^{3}}$ is 1.12167.acq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-91}) \)$)$ |
Base change
This is a primitive isogeny class.