| L(s) = 1 | + 4·7-s − 16·19-s + 10·25-s − 8·31-s + 20·37-s + 9·49-s + 40·103-s + 4·109-s + 22·121-s + 127-s + 131-s − 64·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 40·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯ |
| L(s) = 1 | + 1.51·7-s − 3.67·19-s + 2·25-s − 1.43·31-s + 3.28·37-s + 9/7·49-s + 3.94·103-s + 0.383·109-s + 2·121-s + 0.0887·127-s + 0.0873·131-s − 5.54·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 3.02·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1016064 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1016064 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.229364470\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.229364470\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13492454153503060912432204510, −9.974475075147220130899211934786, −9.043254092535217975730650784603, −8.767235446291592073544157948120, −8.730378237228071245125837124866, −8.113415734673425054197306037503, −7.68989240239546328973781794328, −7.41358040040647653967041732677, −6.67274662101227327522764097490, −6.37447343321520701377945717431, −5.99201359655654836576137737500, −5.38956180402213963716455353341, −4.70862159544870010970558261220, −4.52641487914003300339760861398, −4.20043054938959377757651461653, −3.48970516089307351932069181564, −2.57701478862453187354129891355, −2.23353128743320239538718974380, −1.64591557034862902727546244494, −0.69554242727183577572619045318,
0.69554242727183577572619045318, 1.64591557034862902727546244494, 2.23353128743320239538718974380, 2.57701478862453187354129891355, 3.48970516089307351932069181564, 4.20043054938959377757651461653, 4.52641487914003300339760861398, 4.70862159544870010970558261220, 5.38956180402213963716455353341, 5.99201359655654836576137737500, 6.37447343321520701377945717431, 6.67274662101227327522764097490, 7.41358040040647653967041732677, 7.68989240239546328973781794328, 8.113415734673425054197306037503, 8.730378237228071245125837124866, 8.767235446291592073544157948120, 9.043254092535217975730650784603, 9.974475075147220130899211934786, 10.13492454153503060912432204510