L(s) = 1 | + 2·9-s + 8·19-s − 12·29-s − 8·31-s + 12·41-s + 10·49-s − 24·59-s + 4·61-s − 24·71-s − 16·79-s − 5·81-s + 12·89-s + 12·101-s − 4·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 16·171-s + 173-s + ⋯ |
L(s) = 1 | + 2/3·9-s + 1.83·19-s − 2.22·29-s − 1.43·31-s + 1.87·41-s + 10/7·49-s − 3.12·59-s + 0.512·61-s − 2.84·71-s − 1.80·79-s − 5/9·81-s + 1.27·89-s + 1.19·101-s − 0.383·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 1.22·171-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.034365470\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.034365470\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.33024189415308501730553576776, −13.52643273303449432817387322879, −12.98781540167559015103629201578, −12.81002754851319816436699890857, −11.81746361245409757385621519176, −11.75083487116390041285185985182, −10.78630433012170936477774500537, −10.62485914808997747602449648235, −9.678494221603797481097103622902, −9.284859191225383023872534913133, −8.960199626410135445348724291747, −7.79001924966433881829146023073, −7.43493432744747467519834720266, −7.11279555676085094514050237941, −5.81551045176731723788667961676, −5.68482641200058823791632445172, −4.61840726780746961176124773780, −3.87154079940685422623428227102, −3.00312250730576770700466962261, −1.62617164730213689031770455141,
1.62617164730213689031770455141, 3.00312250730576770700466962261, 3.87154079940685422623428227102, 4.61840726780746961176124773780, 5.68482641200058823791632445172, 5.81551045176731723788667961676, 7.11279555676085094514050237941, 7.43493432744747467519834720266, 7.79001924966433881829146023073, 8.960199626410135445348724291747, 9.284859191225383023872534913133, 9.678494221603797481097103622902, 10.62485914808997747602449648235, 10.78630433012170936477774500537, 11.75083487116390041285185985182, 11.81746361245409757385621519176, 12.81002754851319816436699890857, 12.98781540167559015103629201578, 13.52643273303449432817387322879, 14.33024189415308501730553576776