Properties

Label 4-240e2-1.1-c1e2-0-39
Degree $4$
Conductor $57600$
Sign $-1$
Analytic cond. $3.67262$
Root an. cond. $1.38434$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s − 8·11-s − 8·17-s − 25-s − 4·41-s + 6·49-s − 24·59-s − 16·67-s − 4·73-s + 81-s + 16·83-s + 12·89-s + 12·97-s − 8·99-s − 16·107-s + 16·113-s + 30·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 8·153-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 1/3·9-s − 2.41·11-s − 1.94·17-s − 1/5·25-s − 0.624·41-s + 6/7·49-s − 3.12·59-s − 1.95·67-s − 0.468·73-s + 1/9·81-s + 1.75·83-s + 1.27·89-s + 1.21·97-s − 0.804·99-s − 1.54·107-s + 1.50·113-s + 2.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.646·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(57600\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(3.67262\)
Root analytic conductor: \(1.38434\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 57600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_2$ \( 1 + T^{2} \)
good7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \) 2.7.a_ag
11$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.11.i_bi
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.13.a_k
17$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.17.i_bi
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.19.a_w
23$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \) 2.23.a_abi
29$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \) 2.29.a_k
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.31.a_ac
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \) 2.37.a_ba
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.41.e_di
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.43.a_cs
47$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \) 2.47.a_abi
53$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \) 2.53.a_ba
59$C_2$$\times$$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.59.y_jy
61$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \) 2.61.a_acg
67$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.67.q_ha
71$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \) 2.71.a_aby
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.73.e_fu
79$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \) 2.79.a_abi
83$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + p T^{2} ) \) 2.83.aq_gk
89$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.89.am_fu
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.97.am_gk
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.804143650666358001349383861931, −9.096710526443209232880189012965, −8.829474826983761508196225198882, −8.108002295963601353322553255948, −7.63598844897179439504692369973, −7.34164266499214997077928903096, −6.51195461688586678838297404861, −6.06763110265654981236601565320, −5.32643758189178491953328244908, −4.75634283049577948797641226218, −4.38958877340044354804992160625, −3.31185586162261019732426796495, −2.61330572361075039491397001453, −1.93988437920972537143013879679, 0, 1.93988437920972537143013879679, 2.61330572361075039491397001453, 3.31185586162261019732426796495, 4.38958877340044354804992160625, 4.75634283049577948797641226218, 5.32643758189178491953328244908, 6.06763110265654981236601565320, 6.51195461688586678838297404861, 7.34164266499214997077928903096, 7.63598844897179439504692369973, 8.108002295963601353322553255948, 8.829474826983761508196225198882, 9.096710526443209232880189012965, 9.804143650666358001349383861931

Graph of the $Z$-function along the critical line