L(s) = 1 | + 9-s − 8·11-s − 8·17-s − 25-s − 4·41-s + 6·49-s − 24·59-s − 16·67-s − 4·73-s + 81-s + 16·83-s + 12·89-s + 12·97-s − 8·99-s − 16·107-s + 16·113-s + 30·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 8·153-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 1/3·9-s − 2.41·11-s − 1.94·17-s − 1/5·25-s − 0.624·41-s + 6/7·49-s − 3.12·59-s − 1.95·67-s − 0.468·73-s + 1/9·81-s + 1.75·83-s + 1.27·89-s + 1.21·97-s − 0.804·99-s − 1.54·107-s + 1.50·113-s + 2.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.646·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.804143650666358001349383861931, −9.096710526443209232880189012965, −8.829474826983761508196225198882, −8.108002295963601353322553255948, −7.63598844897179439504692369973, −7.34164266499214997077928903096, −6.51195461688586678838297404861, −6.06763110265654981236601565320, −5.32643758189178491953328244908, −4.75634283049577948797641226218, −4.38958877340044354804992160625, −3.31185586162261019732426796495, −2.61330572361075039491397001453, −1.93988437920972537143013879679, 0,
1.93988437920972537143013879679, 2.61330572361075039491397001453, 3.31185586162261019732426796495, 4.38958877340044354804992160625, 4.75634283049577948797641226218, 5.32643758189178491953328244908, 6.06763110265654981236601565320, 6.51195461688586678838297404861, 7.34164266499214997077928903096, 7.63598844897179439504692369973, 8.108002295963601353322553255948, 8.829474826983761508196225198882, 9.096710526443209232880189012965, 9.804143650666358001349383861931