Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 89 x^{2} )( 1 + 2 x + 89 x^{2} )$ |
| $1 - 12 x + 150 x^{2} - 1068 x^{3} + 7921 x^{4}$ | |
| Frobenius angles: | $\pm0.233878122877$, $\pm0.533804287064$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $376$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6992$ | $63990784$ | $497312104016$ | $3936656719790080$ | $31182861712348707152$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $78$ | $8078$ | $705438$ | $62743326$ | $5584263918$ | $496982846126$ | $44231320337982$ | $3936588607522366$ | $350356403554284942$ | $31181719929988822478$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 376 curves (of which all are hyperelliptic):
- $y^2=55 x^6+80 x^5+38 x^4+13 x^3+25 x^2+33 x+29$
- $y^2=35 x^6+57 x^5+18 x^4+56 x^3+72 x^2+88 x+44$
- $y^2=21 x^6+58 x^5+19 x^4+18 x^3+22 x^2+17$
- $y^2=60 x^6+31 x^5+12 x^4+37 x^3+44 x^2+47 x+88$
- $y^2=8 x^6+6 x^5+41 x^4+2 x^3+5 x^2+24 x+46$
- $y^2=50 x^6+51 x^5+14 x^4+87 x^3+40 x^2+85 x+58$
- $y^2=25 x^6+86 x^5+85 x^4+65 x^3+81 x^2+82 x+22$
- $y^2=14 x^6+65 x^5+56 x^4+51 x^3+56 x^2+56 x+40$
- $y^2=18 x^6+43 x^5+79 x^4+30 x^3+6 x^2+29 x+62$
- $y^2=4 x^6+23 x^5+23 x^4+64 x^3+14 x^2+24 x+16$
- $y^2=13 x^6+87 x^5+17 x^4+7 x^3+66 x^2+53 x+24$
- $y^2=18 x^6+9 x^5+59 x^4+46 x^3+26 x^2+10 x+1$
- $y^2=61 x^6+87 x^5+25 x^4+25 x^3+45 x^2+14 x+48$
- $y^2=41 x^6+36 x^5+56 x^4+49 x^3+21 x^2+31 x+86$
- $y^2=67 x^6+21 x^5+42 x^4+27 x^3+56 x^2+75 x+52$
- $y^2=42 x^6+25 x^5+39 x^4+14 x^3+35 x^2+54 x+53$
- $y^2=3 x^6+67 x^5+37 x^4+62 x^3+3 x^2+39 x+23$
- $y^2=43 x^6+65 x^5+38 x^4+32 x^3+37 x^2+27 x+60$
- $y^2=27 x^6+75 x^5+83 x^4+37 x^3+12 x^2+57 x+11$
- $y^2=22 x^6+49 x^5+28 x^4+71 x^3+34 x^2+82 x+12$
- and 356 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The isogeny class factors as 1.89.ao $\times$ 1.89.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.89.aq_hy | $2$ | (not in LMFDB) |
| 2.89.m_fu | $2$ | (not in LMFDB) |
| 2.89.q_hy | $2$ | (not in LMFDB) |