Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 34 x^{2} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.191097871214$, $\pm0.808902128786$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{2}, \sqrt{-15})\) |
Galois group: | $C_2^2$ |
Jacobians: | $194$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2176$ | $4734976$ | $10779401344$ | $23843142107136$ | $52599131794961536$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2142$ | $103824$ | $4886206$ | $229345008$ | $10779587358$ | $506623120464$ | $23811284899198$ | $1119130473102768$ | $52599131354093022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 194 curves (of which all are hyperelliptic):
- $y^2=21 x^6+11 x^5+22 x^4+x^3+12 x^2+32 x+42$
- $y^2=11 x^6+8 x^5+16 x^4+5 x^3+13 x^2+19 x+22$
- $y^2=22 x^6+33 x^5+20 x^4+31 x^3+5 x^2+11 x+34$
- $y^2=16 x^6+24 x^5+6 x^4+14 x^3+25 x^2+8 x+29$
- $y^2=9 x^6+42 x^5+12 x^3+5 x^2+38$
- $y^2=45 x^6+22 x^5+13 x^3+25 x^2+2$
- $y^2=38 x^6+29 x^5+37 x^4+36 x^3+2 x^2+30 x+16$
- $y^2=2 x^6+4 x^5+44 x^4+39 x^3+10 x^2+9 x+33$
- $y^2=2 x^6+7 x^5+39 x^4+24 x^3+3 x^2+x$
- $y^2=10 x^6+35 x^5+7 x^4+26 x^3+15 x^2+5 x$
- $y^2=12 x^6+38 x^5+3 x^4+45 x^3+2 x^2+38 x+44$
- $y^2=13 x^6+2 x^5+15 x^4+37 x^3+10 x^2+2 x+32$
- $y^2=35 x^6+10 x^5+26 x^4+20 x^3+25 x^2+45 x+28$
- $y^2=34 x^6+3 x^5+36 x^4+6 x^3+31 x^2+37 x+46$
- $y^2=33 x^6+18 x^5+35 x^4+14 x^3+24 x+33$
- $y^2=34 x^6+41 x^5+12 x^4+7 x^3+18 x^2+18 x+25$
- $y^2=29 x^6+17 x^5+13 x^4+35 x^3+43 x^2+43 x+31$
- $y^2=26 x^6+19 x^5+25 x^4+11 x^3+22 x^2+19 x+21$
- $y^2=18 x^5+15 x^4+17 x^3+6 x^2+17 x+37$
- $y^2=43 x^5+28 x^4+38 x^3+30 x^2+38 x+44$
- and 174 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-15})\). |
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.abi 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-30}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.a_bi | $4$ | (not in LMFDB) |
2.47.aq_ey | $8$ | (not in LMFDB) |
2.47.q_ey | $8$ | (not in LMFDB) |