Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 10 x + 59 x^{2} )( 1 + 14 x + 59 x^{2} )$ |
$1 + 24 x + 258 x^{2} + 1416 x^{3} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.725626973200$, $\pm0.864937436951$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $32$ |
Isomorphism classes: | 80 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5180$ | $11914000$ | $42077228060$ | $146921541760000$ | $511081769781251900$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $3422$ | $204876$ | $12124878$ | $714875364$ | $42180691502$ | $2488651433436$ | $146830441239838$ | $8662995691476084$ | $511116754938219902$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=19 x^6+10 x^5+31 x^4+7 x^3+31 x^2+10 x+19$
- $y^2=25 x^6+40 x^5+49 x^4+33 x^3+37 x^2+52 x+36$
- $y^2=30 x^6+x^5+16 x^4+32 x^3+51 x^2+16 x+34$
- $y^2=36 x^6+3 x^5+41 x^4+25 x^3+41 x^2+3 x+36$
- $y^2=29 x^6+16 x^5+27 x^4+39 x^3+27 x^2+16 x+29$
- $y^2=48 x^6+12 x^5+2 x^4+5 x^3+10 x^2+5 x+41$
- $y^2=39 x^6+38 x^5+23 x^4+27 x^3+40 x^2+44 x+14$
- $y^2=19 x^6+28 x^5+58 x^4+25 x^3+40 x^2+6 x+46$
- $y^2=57 x^6+6 x^5+32 x^4+6 x^3+32 x^2+6 x+57$
- $y^2=37 x^6+5 x^5+49 x^4+38 x^3+21 x^2+25 x+54$
- $y^2=29 x^6+13 x^5+55 x^4+28 x^3+38 x^2+8 x+12$
- $y^2=40 x^6+5 x^5+27 x^4+18 x^3+37 x+50$
- $y^2=8 x^6+34 x^5+23 x^4+45 x^3+51 x^2+43 x+35$
- $y^2=46 x^6+52 x^5+15 x^4+43 x^3+33 x^2+8 x+1$
- $y^2=17 x^6+9 x^5+33 x^4+23 x^3+19 x^2+21 x+27$
- $y^2=44 x^6+20 x^4+2 x^3+20 x^2+44$
- $y^2=49 x^6+57 x^5+40 x^4+21 x^3+37 x^2+37 x+35$
- $y^2=9 x^6+28 x^5+5 x^4+9 x^3+28 x^2+20 x+45$
- $y^2=49 x^6+44 x^5+52 x^4+6 x^3+14 x^2+5$
- $y^2=26 x^6+24 x^5+30 x^4+12 x^3+54 x^2+40 x+19$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.k $\times$ 1.59.o and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.ay_jy | $2$ | (not in LMFDB) |
2.59.ae_aw | $2$ | (not in LMFDB) |
2.59.e_aw | $2$ | (not in LMFDB) |