Properties

Label 2.59.y_jy
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 + 10 x + 59 x^{2} )( 1 + 14 x + 59 x^{2} )$
  $1 + 24 x + 258 x^{2} + 1416 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.725626973200$, $\pm0.864937436951$
Angle rank:  $2$ (numerical)
Jacobians:  $32$
Isomorphism classes:  80

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5180$ $11914000$ $42077228060$ $146921541760000$ $511081769781251900$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $84$ $3422$ $204876$ $12124878$ $714875364$ $42180691502$ $2488651433436$ $146830441239838$ $8662995691476084$ $511116754938219902$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.k $\times$ 1.59.o and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.ay_jy$2$(not in LMFDB)
2.59.ae_aw$2$(not in LMFDB)
2.59.e_aw$2$(not in LMFDB)