| L(s) = 1 | + 3-s + 9-s − 4·11-s + 10·17-s − 8·19-s − 2·25-s + 27-s − 4·33-s + 2·41-s − 4·43-s + 10·49-s + 10·51-s − 8·57-s − 4·59-s + 8·67-s + 20·73-s − 2·75-s + 81-s + 12·83-s + 18·89-s − 4·99-s − 4·107-s − 22·113-s + 6·121-s + 2·123-s + 127-s − 4·129-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 1/3·9-s − 1.20·11-s + 2.42·17-s − 1.83·19-s − 2/5·25-s + 0.192·27-s − 0.696·33-s + 0.312·41-s − 0.609·43-s + 10/7·49-s + 1.40·51-s − 1.05·57-s − 0.520·59-s + 0.977·67-s + 2.34·73-s − 0.230·75-s + 1/9·81-s + 1.31·83-s + 1.90·89-s − 0.402·99-s − 0.386·107-s − 2.06·113-s + 6/11·121-s + 0.180·123-s + 0.0887·127-s − 0.352·129-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 442368 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 442368 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.080560907\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.080560907\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.328393326310747805121223539889, −8.183981963669871922709624852076, −7.76746773465333335664011252853, −7.44056605684254858936792029527, −6.74709799243706617042890539415, −6.31879596862550091228684328087, −5.69903289863592517141596692118, −5.30790916053724469270804254899, −4.84335964197004779748227925945, −4.09540802495458556946701509560, −3.63776461821432417761955516907, −3.08552310305503150051979769154, −2.40895468931649609205020815967, −1.88651998003305839287872142530, −0.75540255720867727176094743356,
0.75540255720867727176094743356, 1.88651998003305839287872142530, 2.40895468931649609205020815967, 3.08552310305503150051979769154, 3.63776461821432417761955516907, 4.09540802495458556946701509560, 4.84335964197004779748227925945, 5.30790916053724469270804254899, 5.69903289863592517141596692118, 6.31879596862550091228684328087, 6.74709799243706617042890539415, 7.44056605684254858936792029527, 7.76746773465333335664011252853, 8.183981963669871922709624852076, 8.328393326310747805121223539889