Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 18 x + 89 x^{2} )( 1 + 89 x^{2} )$ |
| $1 - 18 x + 178 x^{2} - 1602 x^{3} + 7921 x^{4}$ | |
| Frobenius angles: | $\pm0.0969241796512$, $\pm0.5$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $384$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6480$ | $62985600$ | $496259401680$ | $3935251604275200$ | $31181679635393192400$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $7954$ | $703944$ | $62720926$ | $5584052232$ | $496983058162$ | $44231341968648$ | $3936588775737406$ | $350356404797334216$ | $31181719952250321874$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 384 curves (of which all are hyperelliptic):
- $y^2=77 x^6+13 x^5+18 x^4+80 x^3+19 x^2+23 x+88$
- $y^2=23 x^6+80 x^5+67 x^4+5 x^3+46 x^2+13 x+46$
- $y^2=70 x^6+45 x^5+36 x^3+42 x^2+14 x+19$
- $y^2=7 x^6+86 x^5+23 x^4+87 x^3+22 x^2+52 x+48$
- $y^2=56 x^6+50 x^5+35 x^4+40 x^3+65 x^2+15 x+52$
- $y^2=82 x^6+56 x^5+76 x^4+31 x^3+21 x^2+39 x+43$
- $y^2=3 x^6+46 x^5+73 x^4+85 x^3+50 x^2+2 x+70$
- $y^2=42 x^6+56 x^5+60 x^4+60 x^3+3 x^2+22 x+82$
- $y^2=66 x^6+65 x^5+50 x^4+21 x^3+17 x^2+48 x+58$
- $y^2=86 x^6+79 x^5+65 x^4+19 x^3+72 x^2+79 x+59$
- $y^2=82 x^6+29 x^5+20 x^4+81 x^3+21 x^2+57 x+15$
- $y^2=31 x^6+64 x^5+63 x^3+50 x^2+71 x+8$
- $y^2=9 x^6+51 x^5+47 x^4+30 x^3+43 x^2+62 x+69$
- $y^2=32 x^6+73 x^5+2 x^3+x+72$
- $y^2=72 x^6+10 x^5+23 x^4+15 x^3+23 x^2+10 x+72$
- $y^2=22 x^6+74 x^5+43 x^4+17 x^3+9 x^2+69 x+71$
- $y^2=75 x^6+82 x^5+11 x^4+88 x^3+22 x^2+35 x$
- $y^2=11 x^6+85 x^5+59 x^4+87 x^3+62 x^2+22 x+27$
- $y^2=44 x^6+52 x^5+4 x^3+16 x^2+42 x+57$
- $y^2=70 x^6+66 x^5+61 x^4+47 x^3+59 x^2+15 x+17$
- and 364 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$| The isogeny class factors as 1.89.as $\times$ 1.89.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.afq $\times$ 1.7921.gw. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.89.s_gw | $2$ | (not in LMFDB) |