Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 43 x^{2} )( 1 + 8 x + 43 x^{2} )$ |
$1 + 4 x + 54 x^{2} + 172 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.401344489543$, $\pm0.708828274828$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $288$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2080$ | $3594240$ | $6315880480$ | $11695081881600$ | $21607425843546400$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $1942$ | $79440$ | $3420814$ | $146980848$ | $6321206374$ | $271820507664$ | $11688202178206$ | $502592579893680$ | $21611482302310582$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 288 curves (of which all are hyperelliptic):
- $y^2=11 x^6+25 x^5+31 x^4+15 x^2+20 x+23$
- $y^2=30 x^6+16 x^5+30 x^4+6 x^3+12 x^2+35 x$
- $y^2=10 x^6+13 x^5+17 x^4+27 x^3+25 x^2+36 x+38$
- $y^2=18 x^6+8 x^5+7 x^4+19 x^3+12 x^2+15 x+36$
- $y^2=15 x^6+10 x^5+28 x^4+3 x^3+35 x^2+27 x+8$
- $y^2=33 x^6+7 x^5+7 x^4+27 x^3+36 x^2+29 x+15$
- $y^2=x^6+21 x^5+3 x^4+13 x^3+28 x^2+40 x+15$
- $y^2=12 x^6+42 x^5+14 x^4+20 x^3+25 x^2+38 x+28$
- $y^2=25 x^6+23 x^5+41 x^4+40 x^3+7 x^2+41 x+3$
- $y^2=18 x^6+29 x^5+9 x^4+23 x^3+27 x^2+37 x+41$
- $y^2=18 x^6+26 x^5+28 x^4+8 x^3+34 x^2+5 x+9$
- $y^2=4 x^5+19 x^4+41 x^3+19 x^2+4 x$
- $y^2=6 x^6+2 x^5+34 x^4+37 x^3+19 x^2+16 x+16$
- $y^2=10 x^6+28 x^5+28 x^4+37 x^2+32 x+23$
- $y^2=29 x^5+10 x^4+13 x^3+26 x^2+31 x+14$
- $y^2=3 x^6+12 x^5+41 x^4+5 x^3+13 x^2+11 x+1$
- $y^2=x^6+9 x^5+4 x^4+13 x^3+4 x^2+9 x+1$
- $y^2=9 x^6+37 x^5+42 x^4+10 x^3+37 x^2+37$
- $y^2=35 x^6+22 x^5+30 x^4+24 x^3+33 x^2+13 x+11$
- $y^2=32 x^6+17 x^5+31 x^4+38 x^3+31 x^2+17 x+32$
- and 268 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.ae $\times$ 1.43.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.