Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 73 x^{2} )( 1 - 6 x + 73 x^{2} )$ |
| $1 - 20 x + 230 x^{2} - 1460 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.194368965322$, $\pm0.385799748780$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $202$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4080$ | $28723200$ | $151887763440$ | $806650859520000$ | $4297629764630492400$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $5390$ | $390438$ | $28404958$ | $2073073494$ | $151334473070$ | $11047405255878$ | $806460136854718$ | $58871586408194934$ | $4297625821881759950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 202 curves (of which all are hyperelliptic):
- $y^2=23 x^6+11 x^5+30 x^4+57 x^3+34 x^2+64 x+2$
- $y^2=12 x^6+18 x^5+41 x^4+42 x^3+33 x^2+4 x+44$
- $y^2=12 x^6+7 x^5+17 x^4+36 x^3+39 x^2+28 x+50$
- $y^2=62 x^6+67 x^5+23 x^4+53 x^3+44 x^2+42 x$
- $y^2=40 x^6+60 x^5+45 x^4+58 x^3+60 x^2+59 x+33$
- $y^2=53 x^6+45 x^5+63 x^4+55 x^3+63 x^2+45 x+53$
- $y^2=39 x^6+72 x^5+14 x^4+8 x^3+72 x^2+25 x+27$
- $y^2=5 x^6+55 x^5+66 x^4+57 x^3+66 x^2+55 x+5$
- $y^2=31 x^6+60 x^5+67 x^4+34 x^3+5 x^2+52 x+1$
- $y^2=31 x^6+56 x^5+63 x^4+33 x^3+49 x^2+42 x+5$
- $y^2=28 x^6+2 x^5+65 x^4+24 x^3+3 x^2+71 x+47$
- $y^2=60 x^6+14 x^5+45 x^4+72 x^3+55 x^2+64 x+2$
- $y^2=49 x^6+2 x^5+45 x^4+42 x^3+64 x^2+14 x+36$
- $y^2=64 x^6+2 x^5+15 x^4+55 x^3+15 x^2+2 x+64$
- $y^2=40 x^6+50 x^5+26 x^4+54 x^3+33 x^2+38 x+15$
- $y^2=6 x^6+14 x^5+55 x^4+68 x^3+14 x^2+62 x+15$
- $y^2=42 x^6+69 x^5+26 x^4+6 x^3+64 x^2+72 x$
- $y^2=52 x^6+27 x^5+42 x^4+68 x^3+29 x^2+18 x+51$
- $y^2=53 x^6+63 x^5+29 x^4+32 x^3+29 x^2+63 x+53$
- $y^2=14 x^6+4 x^5+36 x^4+32 x^3+71 x^2+64 x+20$
- and 182 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.ao $\times$ 1.73.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.