Invariants
| Base field: | $\F_{17}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 17 x^{2} )( 1 - 4 x + 17 x^{2} )$ |
| $1 - 10 x + 58 x^{2} - 170 x^{3} + 289 x^{4}$ | |
| Frobenius angles: | $\pm0.240632536990$, $\pm0.338793663197$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $8$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $168$ | $88704$ | $25290216$ | $7045226496$ | $2016775051368$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $8$ | $306$ | $5144$ | $84350$ | $1420408$ | $24129522$ | $410300584$ | $6975697534$ | $118587959528$ | $2015994055986$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=5 x^6+4 x^5+12 x^4+14 x^2+13 x+14$
- $y^2=7 x^6+16 x^5+6 x^4+6 x^3+6 x^2+16 x+7$
- $y^2=14 x^6+9 x^5+15 x^4+x^3+15 x^2+9 x+14$
- $y^2=5 x^6+9 x^4+4 x^3+9 x^2+5$
- $y^2=11 x^6+5 x^5+10 x^4+7 x^3+12 x^2+14 x+5$
- $y^2=6 x^6+7 x^5+6 x^4+15 x^3+3 x^2+6 x+5$
- $y^2=x^6+10 x^5+14 x^4+8 x^3+3 x^2+10 x+16$
- $y^2=2 x^5+7 x^4+15 x^3+7 x^2+2 x$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$| The isogeny class factors as 1.17.ag $\times$ 1.17.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.17.ac_k | $2$ | (not in LMFDB) |
| 2.17.c_k | $2$ | (not in LMFDB) |
| 2.17.k_cg | $2$ | (not in LMFDB) |