L(s) = 1 | + 3-s + 9-s − 4·11-s − 6·17-s − 4·19-s + 2·25-s + 27-s − 4·33-s − 14·41-s + 6·49-s − 6·51-s − 4·57-s + 12·59-s + 16·67-s − 20·73-s + 2·75-s + 81-s − 12·83-s + 18·89-s + 16·97-s − 4·99-s − 20·107-s + 10·113-s + 6·121-s − 14·123-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s − 1.20·11-s − 1.45·17-s − 0.917·19-s + 2/5·25-s + 0.192·27-s − 0.696·33-s − 2.18·41-s + 6/7·49-s − 0.840·51-s − 0.529·57-s + 1.56·59-s + 1.95·67-s − 2.34·73-s + 0.230·75-s + 1/9·81-s − 1.31·83-s + 1.90·89-s + 1.62·97-s − 0.402·99-s − 1.93·107-s + 0.940·113-s + 6/11·121-s − 1.26·123-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.498032378\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.498032378\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.84188103555278893187959189334, −7.43987353126491932373856450841, −6.95870060261989931162845703414, −6.58109062111164641439666363727, −6.30369937477715143348032874159, −5.47734093216756610769474863505, −5.24474947824441450139706033134, −4.72976679030323786993830080665, −4.21253039161606111071849899781, −3.83221383137522969437051195772, −3.14829738248562048511669896745, −2.63329532608116959549467292840, −2.19248080618599981935919748911, −1.66280979140269832745785849409, −0.46618205776326175064895064670,
0.46618205776326175064895064670, 1.66280979140269832745785849409, 2.19248080618599981935919748911, 2.63329532608116959549467292840, 3.14829738248562048511669896745, 3.83221383137522969437051195772, 4.21253039161606111071849899781, 4.72976679030323786993830080665, 5.24474947824441450139706033134, 5.47734093216756610769474863505, 6.30369937477715143348032874159, 6.58109062111164641439666363727, 6.95870060261989931162845703414, 7.43987353126491932373856450841, 7.84188103555278893187959189334