Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 62 x^{2} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.135368257275$, $\pm0.864631742725$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-2}, \sqrt{39})\) |
Galois group: | $C_2^2$ |
Jacobians: | $48$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2148$ | $4613904$ | $10779387876$ | $23816898625536$ | $52599132439328868$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2086$ | $103824$ | $4880830$ | $229345008$ | $10779560422$ | $506623120464$ | $23811305521534$ | $1119130473102768$ | $52599132642827686$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=35 x^6+7 x^5+13 x^4+2 x^3+40 x^2+2 x+13$
- $y^2=34 x^6+35 x^5+18 x^4+10 x^3+12 x^2+10 x+18$
- $y^2=13 x^6+21 x^5+17 x^4+46 x^3+20 x^2+25 x+24$
- $y^2=18 x^6+35 x^5+4 x^4+x^3+46 x^2+11 x+10$
- $y^2=26 x^6+28 x^5+18 x^4+28 x^3+8 x^2+12 x+31$
- $y^2=5 x^6+32 x^5+33 x^4+11 x^3+46 x^2+23 x+26$
- $y^2=24 x^6+31 x^5+45 x^4+30 x^3+15 x^2+26 x+16$
- $y^2=42 x^6+36 x^5+27 x^4+15 x^3+43 x^2+46 x+6$
- $y^2=22 x^6+39 x^5+41 x^4+28 x^3+27 x^2+42 x+30$
- $y^2=3 x^6+28 x^5+4 x^4+18 x^3+38 x^2+36 x+40$
- $y^2=36 x^6+13 x^5+6 x^4+7 x^3+44 x^2+15 x+19$
- $y^2=24 x^6+26 x^5+24 x^4+7 x^3+14 x^2+36 x+46$
- $y^2=26 x^6+36 x^5+26 x^4+35 x^3+23 x^2+39 x+42$
- $y^2=19 x^6+41 x^5+18 x^4+36 x^3+26 x^2+39 x+35$
- $y^2=15 x^6+35 x^5+18 x^4+37 x^3+15 x^2+23 x+25$
- $y^2=42 x^6+10 x^5+31 x^4+28 x^3+x^2+18 x+28$
- $y^2=22 x^6+3 x^5+14 x^4+46 x^3+5 x^2+43 x+46$
- $y^2=36 x^6+46 x^5+20 x^4+27 x^3+40 x^2+37 x+33$
- $y^2=39 x^6+42 x^5+6 x^4+41 x^3+12 x^2+44 x+24$
- $y^2=23 x^6+40 x^5+32 x^4+44 x^3+43 x^2+30 x+14$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{39})\). |
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.ack 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-78}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.a_ck | $4$ | (not in LMFDB) |
2.47.ai_bg | $8$ | (not in LMFDB) |
2.47.i_bg | $8$ | (not in LMFDB) |