Properties

Label 2.47.a_ack
Base field $\F_{47}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{47}$
Dimension:  $2$
L-polynomial:  $1 - 62 x^{2} + 2209 x^{4}$
Frobenius angles:  $\pm0.135368257275$, $\pm0.864631742725$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-2}, \sqrt{39})\)
Galois group:  $C_2^2$
Jacobians:  $48$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2148$ $4613904$ $10779387876$ $23816898625536$ $52599132439328868$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $48$ $2086$ $103824$ $4880830$ $229345008$ $10779560422$ $506623120464$ $23811305521534$ $1119130473102768$ $52599132642827686$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{47^{2}}$.

Endomorphism algebra over $\F_{47}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{39})\).
Endomorphism algebra over $\overline{\F}_{47}$
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.ack 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-78}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.47.a_ck$4$(not in LMFDB)
2.47.ai_bg$8$(not in LMFDB)
2.47.i_bg$8$(not in LMFDB)