Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 2 x + 83 x^{2} )( 1 + 10 x + 83 x^{2} )$ |
$1 + 12 x + 186 x^{2} + 996 x^{3} + 6889 x^{4}$ | |
Frobenius angles: | $\pm0.535009590967$, $\pm0.684923259698$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $64$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8084$ | $49053712$ | $325810106804$ | $2252147746468864$ | $15516415610707207124$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $96$ | $7118$ | $569808$ | $47455278$ | $3939135696$ | $326940200318$ | $27136052058624$ | $2252292177797086$ | $186940255238357184$ | $15516041197791091118$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=73 x^6+29 x^5+75 x^4+62 x^3+13 x^2+81 x+59$
- $y^2=33 x^6+53 x^5+64 x^4+4 x^3+5 x^2+45 x+7$
- $y^2=15 x^6+14 x^5+40 x^4+8 x^3+25 x^2+70 x+62$
- $y^2=82 x^6+28 x^5+26 x^4+21 x^3+26 x^2+28 x+82$
- $y^2=71 x^6+7 x^5+7 x^4+4 x^3+58 x^2+56 x+42$
- $y^2=50 x^6+71 x^5+40 x^4+21 x^3+61 x^2+49 x+16$
- $y^2=8 x^6+16 x^5+74 x^4+23 x^3+31 x^2+12 x+40$
- $y^2=7 x^6+44 x^5+56 x^4+49 x^3+13 x^2+48 x+81$
- $y^2=4 x^6+29 x^5+7 x^4+47 x^3+32 x^2+20 x+62$
- $y^2=18 x^6+49 x^5+63 x^4+50 x^3+12 x^2+11 x+24$
- $y^2=76 x^6+35 x^5+26 x^4+17 x^3+16 x^2+30 x+4$
- $y^2=42 x^6+59 x^5+76 x^4+2 x^3+44 x^2+17 x+49$
- $y^2=25 x^6+66 x^5+47 x^4+6 x^3+15 x^2+8 x+70$
- $y^2=18 x^6+38 x^5+35 x^4+3 x^3+3 x^2+48 x+72$
- $y^2=23 x^6+24 x^5+37 x^4+50 x^3+50 x^2+61 x+46$
- $y^2=61 x^6+31 x^5+66 x^3+18 x^2+16 x+66$
- $y^2=58 x^6+24 x^5+41 x^4+21 x^3+23 x^2+54 x+55$
- $y^2=63 x^6+56 x^5+60 x^4+33 x^3+12 x^2+32 x+79$
- $y^2=33 x^6+28 x^5+57 x^4+9 x^3+x^2+60 x+70$
- $y^2=7 x^6+7 x^5+x^4+44 x^3+2 x^2+75 x+35$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The isogeny class factors as 1.83.c $\times$ 1.83.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.am_he | $2$ | (not in LMFDB) |
2.83.ai_fq | $2$ | (not in LMFDB) |
2.83.i_fq | $2$ | (not in LMFDB) |