| L(s) = 1 | − 2-s + 4-s − 5·5-s − 8-s + 5·10-s + 5·13-s + 16-s − 2·17-s − 5·20-s + 16·25-s − 5·26-s − 10·29-s − 32-s + 2·34-s + 5·40-s − 41-s − 2·49-s − 16·50-s + 5·52-s + 4·53-s + 10·58-s + 14·61-s + 64-s − 25·65-s − 2·68-s − 12·73-s − 5·80-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 1/2·4-s − 2.23·5-s − 0.353·8-s + 1.58·10-s + 1.38·13-s + 1/4·16-s − 0.485·17-s − 1.11·20-s + 16/5·25-s − 0.980·26-s − 1.85·29-s − 0.176·32-s + 0.342·34-s + 0.790·40-s − 0.156·41-s − 2/7·49-s − 2.26·50-s + 0.693·52-s + 0.549·53-s + 1.31·58-s + 1.79·61-s + 1/8·64-s − 3.10·65-s − 0.242·68-s − 1.40·73-s − 0.559·80-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85280 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85280 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.271662652409530632452278918087, −8.702462810800315837806570747685, −8.520432278449695161035005562201, −7.994910072950875533146183239434, −7.49463150062587607101443361388, −7.13802647449479708184660999226, −6.59407133889208597408219882900, −5.91654362493742085403982810019, −5.20763117932080415917962836803, −4.39560427617215298319464361940, −3.73030783611233631745529122298, −3.60498741756709191300900040033, −2.57413862136445485631009545164, −1.28457922168689811575601370703, 0,
1.28457922168689811575601370703, 2.57413862136445485631009545164, 3.60498741756709191300900040033, 3.73030783611233631745529122298, 4.39560427617215298319464361940, 5.20763117932080415917962836803, 5.91654362493742085403982810019, 6.59407133889208597408219882900, 7.13802647449479708184660999226, 7.49463150062587607101443361388, 7.994910072950875533146183239434, 8.520432278449695161035005562201, 8.702462810800315837806570747685, 9.271662652409530632452278918087