Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 2 x^{2} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.251917575829$, $\pm0.748082424171$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{41}, \sqrt{-42})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $300$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6892$ | $47499664$ | $326940332044$ | $2253599898633216$ | $15516041187680161132$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $84$ | $6894$ | $571788$ | $47485870$ | $3939040644$ | $326940290718$ | $27136050989628$ | $2252292042526174$ | $186940255267540404$ | $15516041188154468814$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 300 curves (of which all are hyperelliptic):
- $y^2=47 x^6+38 x^5+56 x^4+75 x^3+48 x^2+x+75$
- $y^2=11 x^6+76 x^5+29 x^4+67 x^3+13 x^2+2 x+67$
- $y^2=35 x^6+50 x^5+63 x^4+24 x^3+82 x^2+72 x+67$
- $y^2=70 x^6+17 x^5+43 x^4+48 x^3+81 x^2+61 x+51$
- $y^2=36 x^6+31 x^5+81 x^4+19 x^3+59 x^2+74 x+62$
- $y^2=72 x^6+62 x^5+79 x^4+38 x^3+35 x^2+65 x+41$
- $y^2=62 x^6+75 x^5+74 x^4+38 x^3+21 x^2+41 x+64$
- $y^2=41 x^6+67 x^5+65 x^4+76 x^3+42 x^2+82 x+45$
- $y^2=43 x^6+80 x^5+31 x^4+68 x^3+80 x^2+31 x+13$
- $y^2=3 x^6+77 x^5+62 x^4+53 x^3+77 x^2+62 x+26$
- $y^2=78 x^6+13 x^5+24 x^4+70 x^3+10 x^2+34 x+2$
- $y^2=73 x^6+26 x^5+48 x^4+57 x^3+20 x^2+68 x+4$
- $y^2=67 x^6+47 x^5+69 x^4+48 x^3+57 x^2+52 x+64$
- $y^2=24 x^6+5 x^5+35 x^4+68 x^3+25 x^2+72 x+69$
- $y^2=35 x^6+32 x^5+70 x^4+12 x^3+27 x^2+53 x+7$
- $y^2=70 x^6+64 x^5+57 x^4+24 x^3+54 x^2+23 x+14$
- $y^2=74 x^6+37 x^5+45 x^4+44 x^3+77 x+72$
- $y^2=65 x^6+74 x^5+7 x^4+5 x^3+71 x+61$
- $y^2=49 x^6+67 x^5+19 x^4+5 x^3+47 x^2+69 x$
- $y^2=15 x^6+51 x^5+38 x^4+10 x^3+11 x^2+55 x$
- and 280 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{41}, \sqrt{-42})\). |
| The base change of $A$ to $\F_{83^{2}}$ is 1.6889.c 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1722}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.83.a_ac | $4$ | (not in LMFDB) |