Invariants
| Base field: | $\F_{73}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $( 1 + 2 x + 73 x^{2} )( 1 + 10 x + 73 x^{2} )$ | 
| $1 + 12 x + 166 x^{2} + 876 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.537340940774$, $\pm0.698986253580$ | 
| Angle rank: | $2$ (numerical) | 
| Jacobians: | $300$ | 
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6384$ | $29417472$ | $150705306864$ | $806432691585024$ | $4297733326831075824$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $86$ | $5518$ | $387398$ | $28397278$ | $2073123446$ | $151334181358$ | $11047399928294$ | $806460042157246$ | $58871586834224534$ | $4297625835453379918$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 300 curves (of which all are hyperelliptic):
- $y^2=63 x^5+25 x^4+6 x^3+44 x^2+31 x+46$
- $y^2=13 x^6+34 x^5+68 x^4+19 x^3+5 x^2+23 x+59$
- $y^2=61 x^6+47 x^5+26 x^4+65 x^3+31 x^2+22 x+35$
- $y^2=72 x^6+57 x^5+34 x^4+3 x^3+44 x^2+59 x+58$
- $y^2=44 x^6+37 x^5+65 x^4+52 x^3+65 x^2+37 x+44$
- $y^2=15 x^6+60 x^5+70 x^4+29 x^3+52 x^2+27 x+28$
- $y^2=6 x^6+46 x^5+4 x^4+47 x^3+4 x^2+46 x+6$
- $y^2=8 x^6+62 x^5+19 x^4+30 x^3+50 x^2+13 x+9$
- $y^2=64 x^6+51 x^5+21 x^4+18 x^3+62 x^2+13 x+65$
- $y^2=71 x^6+62 x^5+62 x^4+72 x^3+51 x^2+37 x+63$
- $y^2=46 x^6+21 x^5+15 x^4+50 x^3+23 x^2+2 x+12$
- $y^2=24 x^6+29 x^5+8 x^4+48 x^3+36 x^2+27 x+51$
- $y^2=68 x^6+4 x^5+3 x^4+39 x^3+61 x^2+64 x+7$
- $y^2=37 x^6+67 x^5+17 x^4+x^3+x^2+58 x+54$
- $y^2=14 x^6+16 x^5+57 x^4+41 x^3+26 x^2+32 x+41$
- $y^2=52 x^6+58 x^5+47 x^4+71 x^3+54 x^2+52 x+35$
- $y^2=25 x^6+27 x^5+18 x^4+46 x^3+38 x^2+23 x+2$
- $y^2=22 x^6+58 x^5+57 x^4+45 x^3+49 x^2+21 x+56$
- $y^2=38 x^6+17 x^5+13 x^4+24 x^3+52 x^2+36 x+59$
- $y^2=46 x^6+58 x^5+56 x^4+19 x^3+56 x^2+58 x+46$
- and 280 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.c $\times$ 1.73.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: | 
Base change
This is a primitive isogeny class.
