Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 46 x^{2} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.194230404442$, $\pm0.805769595558$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{5}, \sqrt{-22})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $198$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4444$ | $19749136$ | $90458904316$ | $406344318944256$ | $1822837801895747164$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $68$ | $4398$ | $300764$ | $20164846$ | $1350125108$ | $90459426462$ | $6060711605324$ | $406067663987038$ | $27206534396294948$ | $1822837799239732878$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 198 curves (of which all are hyperelliptic):
- $y^2=49 x^6+53 x^5+60 x^4+65 x^3+65 x^2+54 x+30$
- $y^2=31 x^6+39 x^5+53 x^4+63 x^3+63 x^2+41 x+60$
- $y^2=19 x^6+43 x^5+45 x^4+14 x^3+3 x^2+39 x+33$
- $y^2=38 x^6+19 x^5+23 x^4+28 x^3+6 x^2+11 x+66$
- $y^2=40 x^6+49 x^5+42 x^4+59 x^3+17 x^2+62 x+52$
- $y^2=63 x^6+25 x^5+11 x^4+20 x^3+x^2+29 x+60$
- $y^2=12 x^6+22 x^5+40 x^4+29 x^3+42 x^2+21 x$
- $y^2=24 x^6+44 x^5+13 x^4+58 x^3+17 x^2+42 x$
- $y^2=2 x^6+49 x^5+16 x^4+39 x^3+59 x^2+50 x+48$
- $y^2=4 x^6+31 x^5+32 x^4+11 x^3+51 x^2+33 x+29$
- $y^2=38 x^6+44 x^5+54 x^4+61 x^3+61 x^2+51 x+55$
- $y^2=4 x^6+9 x^5+55 x^4+39 x^3+4 x^2+54 x+25$
- $y^2=8 x^6+18 x^5+43 x^4+11 x^3+8 x^2+41 x+50$
- $y^2=11 x^6+24 x^5+49 x^4+25 x^3+59 x^2+48 x+55$
- $y^2=22 x^6+48 x^5+31 x^4+50 x^3+51 x^2+29 x+43$
- $y^2=54 x^6+5 x^5+20 x^4+2 x^3+40 x^2+20 x+30$
- $y^2=62 x^6+31 x^5+52 x^4+42 x^3+40 x^2+12 x+3$
- $y^2=35 x^6+48 x^5+19 x^4+26 x^3+27 x^2+17 x+48$
- $y^2=3 x^6+29 x^5+38 x^4+52 x^3+54 x^2+34 x+29$
- $y^2=64 x^6+4 x^5+46 x^4+27 x^2+29 x+27$
- and 178 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{5}, \sqrt{-22})\). |
| The base change of $A$ to $\F_{67^{2}}$ is 1.4489.abu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-110}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.a_bu | $4$ | (not in LMFDB) |