Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 61 x^{2} )( 1 - 6 x + 61 x^{2} )$ |
| $1 - 14 x + 170 x^{2} - 854 x^{3} + 3721 x^{4}$ | |
| Frobenius angles: | $\pm0.328850104905$, $\pm0.374508117845$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $48$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3024$ | $14394240$ | $51937952976$ | $191764441128960$ | $713276213565850704$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $3866$ | $228816$ | $13849966$ | $844517328$ | $51519598058$ | $3142742090928$ | $191707351748446$ | $11694146392915056$ | $713342911528634426$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=18 x^6+30 x^5+20 x^4+42 x^3+20 x^2+30 x+18$
- $y^2=11 x^6+24 x^5+40 x^4+5 x^3+10 x^2+32 x+24$
- $y^2=58 x^6+17 x^5+10 x^4+58 x^3+10 x^2+17 x+58$
- $y^2=59 x^6+49 x^5+30 x^4+40 x^3+32 x^2+14 x+54$
- $y^2=8 x^6+18 x^5+59 x^4+41 x^3+59 x^2+18 x+8$
- $y^2=14 x^6+48 x^5+56 x^4+13 x^3+56 x^2+48 x+14$
- $y^2=18 x^6+25 x^5+37 x^4+30 x^3+38 x^2+47 x+55$
- $y^2=3 x^6+50 x^5+8 x^4+26 x^3+28 x^2+33 x+60$
- $y^2=30 x^6+25 x^5+36 x^4+33 x^3+22 x^2+34 x+29$
- $y^2=53 x^6+26 x^5+36 x^4+15 x^3+36 x^2+26 x+53$
- $y^2=7 x^6+48 x^5+31 x^4+27 x^3+29 x^2+5 x+55$
- $y^2=46 x^6+60 x^5+27 x^4+5 x^3+58 x^2+3 x+56$
- $y^2=7 x^6+34 x^5+31 x^4+9 x^3+31 x^2+34 x+7$
- $y^2=14 x^5+6 x^4+59 x^3+6 x^2+14 x$
- $y^2=51 x^6+42 x^5+52 x^4+10 x^3+52 x^2+42 x+51$
- $y^2=23 x^6+16 x^5+30 x^4+46 x^3+30 x^2+16 x+23$
- $y^2=6 x^6+53 x^5+42 x^4+20 x^3+42 x^2+53 x+6$
- $y^2=51 x^6+41 x^5+60 x^4+14 x^3+52 x^2+27 x+30$
- $y^2=55 x^6+58 x^5+33 x^4+55 x^3+37 x^2+9 x+59$
- $y^2=42 x^5+43 x^4+10 x^3+43 x^2+42 x$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The isogeny class factors as 1.61.ai $\times$ 1.61.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.ac_cw | $2$ | (not in LMFDB) |
| 2.61.c_cw | $2$ | (not in LMFDB) |
| 2.61.o_go | $2$ | (not in LMFDB) |