Properties

Label 2.61.ao_go
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $( 1 - 8 x + 61 x^{2} )( 1 - 6 x + 61 x^{2} )$
  $1 - 14 x + 170 x^{2} - 854 x^{3} + 3721 x^{4}$
Frobenius angles:  $\pm0.328850104905$, $\pm0.374508117845$
Angle rank:  $2$ (numerical)
Jacobians:  $48$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3024$ $14394240$ $51937952976$ $191764441128960$ $713276213565850704$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $48$ $3866$ $228816$ $13849966$ $844517328$ $51519598058$ $3142742090928$ $191707351748446$ $11694146392915056$ $713342911528634426$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61}$.

Endomorphism algebra over $\F_{61}$
The isogeny class factors as 1.61.ai $\times$ 1.61.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.ac_cw$2$(not in LMFDB)
2.61.c_cw$2$(not in LMFDB)
2.61.o_go$2$(not in LMFDB)