# Stored data for abelian variety isogeny class 2.61.ao_go, downloaded from the LMFDB on 24 November 2025. {"abvar_count": 3024, "abvar_counts": [3024, 14394240, 51937952976, 191764441128960, 713276213565850704, 2654308979074469808000, 9876830191726042543988304, 36751701285519680294393610240, 136753056349738095622314094074576, 508858109523914145385265577391536000], "abvar_counts_str": "3024 14394240 51937952976 191764441128960 713276213565850704 2654308979074469808000 9876830191726042543988304 36751701285519680294393610240 136753056349738095622314094074576 508858109523914145385265577391536000 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.328850104904971, 0.374508117844528], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 48, "curve_counts": [48, 3866, 228816, 13849966, 844517328, 51519598058, 3142742090928, 191707351748446, 11694146392915056, 713342911528634426], "curve_counts_str": "48 3866 228816 13849966 844517328 51519598058 3142742090928 191707351748446 11694146392915056 713342911528634426 ", "curves": ["y^2=18*x^6+30*x^5+20*x^4+42*x^3+20*x^2+30*x+18", "y^2=11*x^6+24*x^5+40*x^4+5*x^3+10*x^2+32*x+24", "y^2=58*x^6+17*x^5+10*x^4+58*x^3+10*x^2+17*x+58", "y^2=59*x^6+49*x^5+30*x^4+40*x^3+32*x^2+14*x+54", "y^2=8*x^6+18*x^5+59*x^4+41*x^3+59*x^2+18*x+8", "y^2=14*x^6+48*x^5+56*x^4+13*x^3+56*x^2+48*x+14", "y^2=18*x^6+25*x^5+37*x^4+30*x^3+38*x^2+47*x+55", "y^2=3*x^6+50*x^5+8*x^4+26*x^3+28*x^2+33*x+60", "y^2=30*x^6+25*x^5+36*x^4+33*x^3+22*x^2+34*x+29", "y^2=53*x^6+26*x^5+36*x^4+15*x^3+36*x^2+26*x+53", "y^2=7*x^6+48*x^5+31*x^4+27*x^3+29*x^2+5*x+55", "y^2=46*x^6+60*x^5+27*x^4+5*x^3+58*x^2+3*x+56", "y^2=7*x^6+34*x^5+31*x^4+9*x^3+31*x^2+34*x+7", "y^2=14*x^5+6*x^4+59*x^3+6*x^2+14*x", "y^2=51*x^6+42*x^5+52*x^4+10*x^3+52*x^2+42*x+51", "y^2=23*x^6+16*x^5+30*x^4+46*x^3+30*x^2+16*x+23", "y^2=6*x^6+53*x^5+42*x^4+20*x^3+42*x^2+53*x+6", "y^2=51*x^6+41*x^5+60*x^4+14*x^3+52*x^2+27*x+30", "y^2=55*x^6+58*x^5+33*x^4+55*x^3+37*x^2+9*x+59", "y^2=42*x^5+43*x^4+10*x^3+43*x^2+42*x", "y^2=32*x^6+50*x^5+34*x^4+58*x^3+34*x^2+50*x+32", "y^2=24*x^6+50*x^5+54*x^4+7*x^3+30*x^2+32*x+37", "y^2=38*x^6+x^5+41*x^4+55*x^3+9*x^2+58*x+33", "y^2=37*x^6+42*x^5+30*x^4+34*x^3+32*x^2+12*x+38", "y^2=53*x^6+20*x^5+30*x^4+40*x^3+59*x^2+15*x+37", "y^2=15*x^6+35*x^5+46*x^4+12*x^3+36*x^2+43*x+22", "y^2=50*x^6+33*x^5+26*x^4+53*x^3+26*x^2+33*x+50", "y^2=40*x^6+15*x^5+13*x^4+38*x^3+13*x^2+15*x+40", "y^2=44*x^6+43*x^5+55*x^4+31*x^3+55*x^2+43*x+44", "y^2=51*x^6+43*x^5+12*x^4+45*x^3+60*x^2+38*x+31", "y^2=37*x^6+15*x^5+41*x^4+8*x^3+41*x^2+15*x+37", "y^2=33*x^6+58*x^5+54*x^4+35*x^3+54*x^2+58*x+33", "y^2=51*x^6+5*x^4+25*x^3+5*x^2+51", "y^2=52*x^6+13*x^5+38*x^4+43*x^3+54*x^2+20*x+27", "y^2=x^6+56*x^5+50*x^4+9*x^3+29*x^2+57*x+60", "y^2=22*x^6+13*x^5+16*x^4+30*x^3+16*x^2+13*x+22", "y^2=23*x^6+44*x^5+31*x^4+9*x^3+11*x^2+7*x+50", "y^2=38*x^6+55*x^5+60*x^4+34*x^3+60*x^2+55*x+38", "y^2=43*x^6+54*x^5+34*x^4+13*x^3+9*x^2+6*x+21", "y^2=47*x^6+35*x^5+12*x^4+2*x^3+13*x^2+11*x+42", "y^2=35*x^6+30*x^5+24*x^4+32*x^3+50*x^2+26*x+31", "y^2=38*x^5+8*x^4+45*x^3+8*x^2+38*x", "y^2=14*x^6+21*x^5+44*x^4+39*x^3+23*x^2+11*x+14", "y^2=41*x^6+30*x^5+5*x^4+4*x^3+15*x^2+26*x+9", "y^2=55*x^6+26*x^5+58*x^4+6*x^3+58*x^2+26*x+55", "y^2=15*x^6+49*x^5+17*x^4+47*x^3+17*x^2+49*x+15", "y^2=x^6+27*x^5+59*x^4+27*x^3+59*x^2+27*x+1", "y^2=60*x^6+19*x^5+x^4+44*x^3+41*x^2+36*x+9"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 10, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.20.1", "2.0.52.1"], "geometric_splitting_field": "4.0.67600.1", "geometric_splitting_polynomials": [[4, 0, 9, 0, 1]], "group_structure_count": 8, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 48, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 48, "label": "2.61.ao_go", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.20.1", "2.0.52.1"], "p": 61, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -14, 170, -854, 3721], "poly_str": "1 -14 170 -854 3721 ", "primitive_models": [], "q": 61, "real_poly": [1, -14, 48], "simple_distinct": ["1.61.ai", "1.61.ag"], "simple_factors": ["1.61.aiA", "1.61.agA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,F+7", "3,-2*F+2"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.67600.1", "splitting_polynomials": [[4, 0, 9, 0, 1]], "twist_count": 4, "twists": [["2.61.ac_cw", "2.3721.fo_skc", 2], ["2.61.c_cw", "2.3721.fo_skc", 2], ["2.61.o_go", "2.3721.fo_skc", 2]], "weak_equivalence_count": 12, "zfv_index": 24, "zfv_index_factorization": [[2, 3], [3, 1]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 37440, "zfv_singular_count": 4, "zfv_singular_primes": ["2,F+7", "3,-2*F+2"]}