Properties

Label 2.97.e_c
Base field $\F_{97}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{97}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 97 x^{2} )( 1 + 16 x + 97 x^{2} )$
  $1 + 4 x + 2 x^{2} + 388 x^{3} + 9409 x^{4}$
Frobenius angles:  $\pm0.291487575149$, $\pm0.801772189629$
Angle rank:  $2$ (numerical)
Jacobians:  $600$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9804$ $88432080$ $834071701932$ $7840204274073600$ $73741033953087540204$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $102$ $9398$ $913878$ $88560574$ $8587179702$ $832972230326$ $80798260427910$ $7837433457996286$ $760231060671406086$ $73742412688908952118$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 600 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{97}$.

Endomorphism algebra over $\F_{97}$
The isogeny class factors as 1.97.am $\times$ 1.97.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.97.abc_ow$2$(not in LMFDB)
2.97.ae_c$2$(not in LMFDB)
2.97.bc_ow$2$(not in LMFDB)