L(s) = 1 | + 2-s + 4-s + 4·5-s + 8-s − 6·9-s + 4·10-s − 4·13-s + 16-s + 2·17-s − 6·18-s + 4·20-s + 2·25-s − 4·26-s − 12·29-s + 32-s + 2·34-s − 6·36-s − 12·37-s + 4·40-s − 12·41-s − 24·45-s + 49-s + 2·50-s − 4·52-s − 4·53-s − 12·58-s + 4·61-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 1.78·5-s + 0.353·8-s − 2·9-s + 1.26·10-s − 1.10·13-s + 1/4·16-s + 0.485·17-s − 1.41·18-s + 0.894·20-s + 2/5·25-s − 0.784·26-s − 2.22·29-s + 0.176·32-s + 0.342·34-s − 36-s − 1.97·37-s + 0.632·40-s − 1.87·41-s − 3.57·45-s + 1/7·49-s + 0.282·50-s − 0.554·52-s − 0.549·53-s − 1.57·58-s + 0.512·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 453152 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 453152 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.141215318250912713100120450381, −8.115728020271838283345679909969, −7.20010097624931167967073862090, −6.94219495068550059915873452189, −6.25342458965698612971884773553, −5.72806725976480398250034055565, −5.70286626752820956259075840901, −5.11332775341498038219899119581, −4.90031529950652941153483007995, −3.69220215237225216243720477255, −3.40674497567057131140915818833, −2.69561838868590084761774809099, −2.04650857588819893440526220286, −1.81489143388530531160395881484, 0,
1.81489143388530531160395881484, 2.04650857588819893440526220286, 2.69561838868590084761774809099, 3.40674497567057131140915818833, 3.69220215237225216243720477255, 4.90031529950652941153483007995, 5.11332775341498038219899119581, 5.70286626752820956259075840901, 5.72806725976480398250034055565, 6.25342458965698612971884773553, 6.94219495068550059915873452189, 7.20010097624931167967073862090, 8.115728020271838283345679909969, 8.141215318250912713100120450381