| L(s) = 1 | − 3-s − 2·7-s − 2·9-s − 8·13-s − 4·19-s + 2·21-s − 9·25-s + 5·27-s − 2·31-s − 18·37-s + 8·39-s + 16·43-s + 3·49-s + 4·57-s − 4·61-s + 4·63-s + 22·67-s − 28·73-s + 9·75-s − 28·79-s + 81-s + 16·91-s + 2·93-s − 18·97-s − 8·103-s + 8·109-s + 18·111-s + ⋯ |
| L(s) = 1 | − 0.577·3-s − 0.755·7-s − 2/3·9-s − 2.21·13-s − 0.917·19-s + 0.436·21-s − 9/5·25-s + 0.962·27-s − 0.359·31-s − 2.95·37-s + 1.28·39-s + 2.43·43-s + 3/7·49-s + 0.529·57-s − 0.512·61-s + 0.503·63-s + 2.68·67-s − 3.27·73-s + 1.03·75-s − 3.15·79-s + 1/9·81-s + 1.67·91-s + 0.207·93-s − 1.82·97-s − 0.788·103-s + 0.766·109-s + 1.70·111-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 853776 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 853776 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.55051318247375673767362801689, −7.20044051165186333263902429412, −7.07506627295383549778258913254, −6.33749430761827790522533904144, −5.93373339407611122896315603521, −5.50454839200369076494692983370, −5.18672240750960531371029490123, −4.53314310994402234388074278431, −4.05589871533530008614715770615, −3.51127816042162066284861488111, −2.62443093669091058806415890195, −2.50570574661996799886651591918, −1.61001524210966283725621308037, 0, 0,
1.61001524210966283725621308037, 2.50570574661996799886651591918, 2.62443093669091058806415890195, 3.51127816042162066284861488111, 4.05589871533530008614715770615, 4.53314310994402234388074278431, 5.18672240750960531371029490123, 5.50454839200369076494692983370, 5.93373339407611122896315603521, 6.33749430761827790522533904144, 7.07506627295383549778258913254, 7.20044051165186333263902429412, 7.55051318247375673767362801689