Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 9 x + 37 x^{2} )^{2}$ |
$1 + 18 x + 155 x^{2} + 666 x^{3} + 1369 x^{4}$ | |
Frobenius angles: | $\pm0.765077740875$, $\pm0.765077740875$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2209$ | $1857769$ | $2538547456$ | $3522569676201$ | $4806613819084009$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $56$ | $1356$ | $50114$ | $1879540$ | $69315536$ | $2565783222$ | $94932417440$ | $3512472489124$ | $129961782486938$ | $4808584245888636$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=3 x^6+3 x^5+10 x^4+22 x^3+24 x^2+17 x+12$
- $y^2=15 x^6+10 x^5+11 x^4+28 x^3+5 x^2+29 x+29$
- $y^2=21 x^6+16 x^5+26 x^4+10 x^3+30 x^2+34 x+12$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$The isogeny class factors as 1.37.j 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-67}) \)$)$ |
Base change
This is a primitive isogeny class.