Properties

Label 2.37.s_fz
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $( 1 + 9 x + 37 x^{2} )^{2}$
  $1 + 18 x + 155 x^{2} + 666 x^{3} + 1369 x^{4}$
Frobenius angles:  $\pm0.765077740875$, $\pm0.765077740875$
Angle rank:  $1$ (numerical)
Jacobians:  $3$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2209$ $1857769$ $2538547456$ $3522569676201$ $4806613819084009$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $56$ $1356$ $50114$ $1879540$ $69315536$ $2565783222$ $94932417440$ $3512472489124$ $129961782486938$ $4808584245888636$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37}$.

Endomorphism algebra over $\F_{37}$
The isogeny class factors as 1.37.j 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-67}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.as_fz$2$(not in LMFDB)
2.37.a_ah$2$(not in LMFDB)
2.37.aj_bs$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.as_fz$2$(not in LMFDB)
2.37.a_ah$2$(not in LMFDB)
2.37.aj_bs$3$(not in LMFDB)
2.37.a_h$4$(not in LMFDB)
2.37.j_bs$6$(not in LMFDB)