Properties

Label 4-810-1.1-c1e2-0-0
Degree $4$
Conductor $810$
Sign $1$
Analytic cond. $0.0516463$
Root an. cond. $0.476716$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s − 5-s − 6-s − 5·7-s + 8-s + 9-s + 10-s − 12-s + 7·13-s + 5·14-s − 15-s + 3·16-s + 6·17-s − 18-s − 11·19-s + 20-s − 5·21-s + 24-s − 4·25-s − 7·26-s + 27-s + 5·28-s − 6·29-s + 30-s + 4·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.447·5-s − 0.408·6-s − 1.88·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s + 1.94·13-s + 1.33·14-s − 0.258·15-s + 3/4·16-s + 1.45·17-s − 0.235·18-s − 2.52·19-s + 0.223·20-s − 1.09·21-s + 0.204·24-s − 4/5·25-s − 1.37·26-s + 0.192·27-s + 0.944·28-s − 1.11·29-s + 0.182·30-s + 0.718·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(810\)    =    \(2 \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(0.0516463\)
Root analytic conductor: \(0.476716\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 810,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3289823157\)
\(L(\frac12)\) \(\approx\) \(0.3289823157\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
good7$C_2$ \( ( 1 + T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.7.f_s
11$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.11.a_w
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.13.ah_bk
17$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \) 2.17.ag_bi
19$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) 2.19.l_co
23$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.23.a_bu
29$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.29.g_cg
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.31.ae_be
37$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.37.an_ds
41$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.41.g_de
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.43.ae_cc
47$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.47.a_dq
53$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.53.g_ec
59$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.59.a_eo
61$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.61.l_fc
67$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.67.ab_ek
71$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.71.a_fm
73$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) 2.73.f_fc
79$C_2$$\times$$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 - 8 T + p T^{2} ) \) 2.79.az_li
83$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \) 2.83.am_gk
89$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + p T^{2} ) \) 2.89.as_gw
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 19 T + p T^{2} ) \) 2.97.r_ga
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.5076338893, −19.1626037497, −18.6983747433, −18.5592411054, −17.5495821026, −16.9011141517, −16.3000171353, −16.0225385141, −14.9691010860, −14.8921107674, −13.5821136983, −13.3351916393, −12.7156394907, −12.1436052702, −10.9087282930, −10.3916050944, −9.42919920821, −9.30558712287, −8.21765036746, −7.94123132226, −6.42217617653, −6.04893540001, −4.04304401380, −3.36585804146, 3.36585804146, 4.04304401380, 6.04893540001, 6.42217617653, 7.94123132226, 8.21765036746, 9.30558712287, 9.42919920821, 10.3916050944, 10.9087282930, 12.1436052702, 12.7156394907, 13.3351916393, 13.5821136983, 14.8921107674, 14.9691010860, 16.0225385141, 16.3000171353, 16.9011141517, 17.5495821026, 18.5592411054, 18.6983747433, 19.1626037497, 19.5076338893

Graph of the $Z$-function along the critical line