Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 2 x + 97 x^{2} )( 1 + 19 x + 97 x^{2} )$ |
| $1 + 17 x + 156 x^{2} + 1649 x^{3} + 9409 x^{4}$ | |
| Frobenius angles: | $\pm0.467624736821$, $\pm0.915025864992$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $203$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $11232$ | $88732800$ | $834712324992$ | $7835100916032000$ | $73742009930736387552$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $115$ | $9433$ | $914578$ | $88502929$ | $8587293355$ | $832973557246$ | $80798290946971$ | $7837433567543521$ | $760231055983133266$ | $73742412713820299593$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 203 curves (of which all are hyperelliptic):
- $y^2=71 x^6+7 x^5+89 x^4+93 x^3+20 x^2+27 x+93$
- $y^2=37 x^6+38 x^5+86 x^4+12 x^3+20 x^2+36 x+50$
- $y^2=x^6+66 x^5+8 x^4+78 x^3+57 x^2+41 x+71$
- $y^2=45 x^6+81 x^5+30 x^4+72 x^2+13 x+29$
- $y^2=50 x^6+61 x^4+71 x^3+12 x^2+4 x+37$
- $y^2=89 x^6+87 x^5+95 x^4+83 x^3+31 x^2+82 x+55$
- $y^2=87 x^6+44 x^5+11 x^4+67 x^3+12 x^2+93 x+74$
- $y^2=31 x^6+70 x^5+22 x^4+51 x^3+48 x^2+76 x+76$
- $y^2=70 x^6+65 x^5+93 x^4+67 x^3+83 x^2+54 x+26$
- $y^2=55 x^6+65 x^5+19 x^4+45 x^3+70 x^2+7 x+96$
- $y^2=53 x^6+13 x^5+27 x^4+41 x^3+93 x^2+38 x+49$
- $y^2=11 x^6+93 x^5+40 x^4+27 x^3+5 x^2+89 x+54$
- $y^2=22 x^6+6 x^5+19 x^4+53 x^3+8 x^2+x+56$
- $y^2=92 x^6+14 x^5+91 x^4+93 x^3+73 x^2+60 x+45$
- $y^2=71 x^5+2 x^4+64 x^3+52 x^2+59 x+91$
- $y^2=31 x^6+84 x^5+22 x^4+69 x^3+50 x^2+92 x$
- $y^2=7 x^6+52 x^5+16 x^4+41 x^3+74 x^2+20 x+61$
- $y^2=17 x^6+77 x^5+33 x^4+11 x^3+35 x^2+92 x+62$
- $y^2=67 x^6+87 x^5+x^4+35 x^3+54 x^2+15 x+42$
- $y^2=66 x^6+66 x^5+82 x^4+49 x^3+61 x^2+28 x$
- and 183 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The isogeny class factors as 1.97.ac $\times$ 1.97.t and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.