Properties

Label 2.67.ab_ek
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $( 1 - 5 x + 67 x^{2} )( 1 + 4 x + 67 x^{2} )$
  $1 - x + 114 x^{2} - 67 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.401201937998$, $\pm0.578570930462$
Angle rank:  $2$ (numerical)
Jacobians:  $176$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4536$ $21192192$ $90500439456$ $405909566060544$ $1822832251791172776$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $67$ $4717$ $300904$ $20143273$ $1350120997$ $90458263222$ $6060710800687$ $406067725270801$ $27206534546222488$ $1822837799742321757$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 176 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The isogeny class factors as 1.67.af $\times$ 1.67.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.aj_fy$2$(not in LMFDB)
2.67.b_ek$2$(not in LMFDB)
2.67.j_fy$2$(not in LMFDB)
2.67.ah_dm$3$(not in LMFDB)
2.67.u_hq$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.aj_fy$2$(not in LMFDB)
2.67.b_ek$2$(not in LMFDB)
2.67.j_fy$2$(not in LMFDB)
2.67.ah_dm$3$(not in LMFDB)
2.67.u_hq$3$(not in LMFDB)
2.67.au_hq$6$(not in LMFDB)
2.67.ap_gw$6$(not in LMFDB)
2.67.am_cs$6$(not in LMFDB)
2.67.h_dm$6$(not in LMFDB)
2.67.m_cs$6$(not in LMFDB)
2.67.p_gw$6$(not in LMFDB)