Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 5 x + 67 x^{2} )( 1 + 4 x + 67 x^{2} )$ |
$1 - x + 114 x^{2} - 67 x^{3} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.401201937998$, $\pm0.578570930462$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $176$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4536$ | $21192192$ | $90500439456$ | $405909566060544$ | $1822832251791172776$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $67$ | $4717$ | $300904$ | $20143273$ | $1350120997$ | $90458263222$ | $6060710800687$ | $406067725270801$ | $27206534546222488$ | $1822837799742321757$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 176 curves (of which all are hyperelliptic):
- $y^2=21 x^6+34 x^5+9 x^4+38 x^3+60 x^2+8 x+48$
- $y^2=34 x^6+24 x^5+22 x^4+66 x^3+26 x^2+54 x+42$
- $y^2=2 x^6+41 x^5+20 x^4+42 x^3+60 x^2+54 x+56$
- $y^2=66 x^6+48 x^5+10 x^4+59 x^3+47 x^2+60 x+50$
- $y^2=3 x^6+29 x^5+38 x^4+55 x^3+57 x^2+3 x+45$
- $y^2=22 x^5+4 x^4+5 x^3+34 x^2+19 x+62$
- $y^2=4 x^6+44 x^5+11 x^4+x^3+14 x^2+16 x+46$
- $y^2=31 x^6+41 x^5+25 x^4+22 x^3+62 x^2+14 x+8$
- $y^2=46 x^6+9 x^5+18 x^4+59 x^2+10 x+26$
- $y^2=6 x^5+66 x^4+20 x^3+24 x^2+33 x+28$
- $y^2=24 x^6+12 x^5+21 x^4+63 x^3+41 x^2+3 x+36$
- $y^2=11 x^6+28 x^5+52 x^4+18 x^3+58 x^2+25 x+32$
- $y^2=36 x^6+55 x^5+30 x^4+60 x^3+63 x^2+40 x+31$
- $y^2=25 x^6+12 x^5+28 x^4+55 x^3+55 x^2+x+63$
- $y^2=x^6+27 x^5+63 x^4+46 x^3+8 x^2+43 x+15$
- $y^2=30 x^6+58 x^5+27 x^4+51 x^3+x^2+16 x+47$
- $y^2=10 x^6+40 x^4+28 x^2+27 x+26$
- $y^2=58 x^6+23 x^5+2 x^4+45 x^3+59 x^2+60 x+13$
- $y^2=16 x^6+58 x^5+36 x^4+18 x^3+7 x^2+46 x+49$
- $y^2=23 x^6+4 x^5+x^4+43 x^3+64 x^2+38 x+20$
- and 156 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.af $\times$ 1.67.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.