Properties

Label 2-81144-1.1-c1-0-52
Degree $2$
Conductor $81144$
Sign $-1$
Analytic cond. $647.938$
Root an. cond. $25.4546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·11-s + 2·13-s − 2·17-s − 23-s − 25-s + 2·29-s − 10·37-s − 6·41-s + 8·43-s − 8·47-s + 6·53-s + 8·55-s − 4·59-s − 14·61-s + 4·65-s + 8·67-s + 8·71-s + 6·73-s + 12·79-s − 12·83-s − 4·85-s − 2·89-s − 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.20·11-s + 0.554·13-s − 0.485·17-s − 0.208·23-s − 1/5·25-s + 0.371·29-s − 1.64·37-s − 0.937·41-s + 1.21·43-s − 1.16·47-s + 0.824·53-s + 1.07·55-s − 0.520·59-s − 1.79·61-s + 0.496·65-s + 0.977·67-s + 0.949·71-s + 0.702·73-s + 1.35·79-s − 1.31·83-s − 0.433·85-s − 0.211·89-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81144\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(647.938\)
Root analytic conductor: \(25.4546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 81144,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.02860349891953, −13.80249067460181, −13.44941549403366, −12.66221774152881, −12.31481011584845, −11.75178948501478, −11.24013913605201, −10.71865061290503, −10.20986531510378, −9.655290557156642, −9.230614274877544, −8.760323083131578, −8.293332755909418, −7.587710751751084, −6.901993447626375, −6.396993823684295, −6.184572693359030, −5.364687645579010, −4.974674087712420, −4.099108096437878, −3.740883732022805, −3.013329766460846, −2.206277035405580, −1.655663339827161, −1.108906820459594, 0, 1.108906820459594, 1.655663339827161, 2.206277035405580, 3.013329766460846, 3.740883732022805, 4.099108096437878, 4.974674087712420, 5.364687645579010, 6.184572693359030, 6.396993823684295, 6.901993447626375, 7.587710751751084, 8.293332755909418, 8.760323083131578, 9.230614274877544, 9.655290557156642, 10.20986531510378, 10.71865061290503, 11.24013913605201, 11.75178948501478, 12.31481011584845, 12.66221774152881, 13.44941549403366, 13.80249067460181, 14.02860349891953

Graph of the $Z$-function along the critical line