Properties

Label 81144.bt
Number of curves $4$
Conductor $81144$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bt1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 81144.bt have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 81144.bt do not have complex multiplication.

Modular form 81144.2.a.bt

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + 4 q^{11} + 2 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 81144.bt

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
81144.bt1 81144q4 \([0, 0, 0, -331779, 62245582]\) \(45989074372/7555707\) \(663576249141808128\) \([2]\) \(884736\) \(2.1413\)  
81144.bt2 81144q2 \([0, 0, 0, -93639, -10101350]\) \(4135597648/385641\) \(8467182763151616\) \([2, 2]\) \(442368\) \(1.7948\)  
81144.bt3 81144q1 \([0, 0, 0, -91434, -10641575]\) \(61604313088/621\) \(852172178256\) \([2]\) \(221184\) \(1.4482\) \(\Gamma_0(N)\)-optimal
81144.bt4 81144q3 \([0, 0, 0, 109221, -47873882]\) \(1640689628/12223143\) \(-1073491519015222272\) \([2]\) \(884736\) \(2.1413\)