Properties

Label 2-76050-1.1-c1-0-131
Degree $2$
Conductor $76050$
Sign $-1$
Analytic cond. $607.262$
Root an. cond. $24.6426$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4·7-s − 8-s + 2·11-s − 4·14-s + 16-s + 4·17-s − 2·19-s − 2·22-s − 6·23-s + 4·28-s + 2·29-s + 4·31-s − 32-s − 4·34-s − 6·37-s + 2·38-s − 6·41-s − 8·43-s + 2·44-s + 6·46-s − 8·47-s + 9·49-s + 10·53-s − 4·56-s − 2·58-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.51·7-s − 0.353·8-s + 0.603·11-s − 1.06·14-s + 1/4·16-s + 0.970·17-s − 0.458·19-s − 0.426·22-s − 1.25·23-s + 0.755·28-s + 0.371·29-s + 0.718·31-s − 0.176·32-s − 0.685·34-s − 0.986·37-s + 0.324·38-s − 0.937·41-s − 1.21·43-s + 0.301·44-s + 0.884·46-s − 1.16·47-s + 9/7·49-s + 1.37·53-s − 0.534·56-s − 0.262·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76050\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(607.262\)
Root analytic conductor: \(24.6426\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 76050,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.31451400006862, −13.98533366717733, −13.43850515250457, −12.59838211159448, −12.06382483844837, −11.78027438178623, −11.34425432702484, −10.77002960711953, −10.14376703277425, −9.936096015702638, −9.224378807830812, −8.482376579008750, −8.186243957026958, −8.012717575522153, −7.089142951934285, −6.765323365144889, −6.056481376868689, −5.406642743036708, −4.955456292010916, −4.245451484746157, −3.680615787978798, −2.935406941411924, −2.052084376405728, −1.625194993356706, −1.046853712280038, 0, 1.046853712280038, 1.625194993356706, 2.052084376405728, 2.935406941411924, 3.680615787978798, 4.245451484746157, 4.955456292010916, 5.406642743036708, 6.056481376868689, 6.765323365144889, 7.089142951934285, 8.012717575522153, 8.186243957026958, 8.482376579008750, 9.224378807830812, 9.936096015702638, 10.14376703277425, 10.77002960711953, 11.34425432702484, 11.78027438178623, 12.06382483844837, 12.59838211159448, 13.43850515250457, 13.98533366717733, 14.31451400006862

Graph of the $Z$-function along the critical line