Properties

Label 2-76050-1.1-c1-0-31
Degree $2$
Conductor $76050$
Sign $-1$
Analytic cond. $607.262$
Root an. cond. $24.6426$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 4·7-s − 8-s − 6·11-s + 4·14-s + 16-s − 4·17-s − 2·19-s + 6·22-s − 6·23-s − 4·28-s + 10·29-s − 4·31-s − 32-s + 4·34-s − 6·37-s + 2·38-s + 10·41-s − 6·44-s + 6·46-s − 8·47-s + 9·49-s − 6·53-s + 4·56-s − 10·58-s − 6·59-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.51·7-s − 0.353·8-s − 1.80·11-s + 1.06·14-s + 1/4·16-s − 0.970·17-s − 0.458·19-s + 1.27·22-s − 1.25·23-s − 0.755·28-s + 1.85·29-s − 0.718·31-s − 0.176·32-s + 0.685·34-s − 0.986·37-s + 0.324·38-s + 1.56·41-s − 0.904·44-s + 0.884·46-s − 1.16·47-s + 9/7·49-s − 0.824·53-s + 0.534·56-s − 1.31·58-s − 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76050\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(607.262\)
Root analytic conductor: \(24.6426\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 76050,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.28582554621035, −13.59315322474563, −13.31435576264192, −12.72821768305575, −12.38971303498985, −11.89618835148040, −11.04573920973280, −10.57987561335754, −10.35741231898311, −9.780146483997845, −9.313594210491254, −8.748807900911145, −8.202702685613629, −7.731320634207664, −7.176875776593321, −6.526142260465134, −6.162069371899253, −5.670561088659953, −4.807032794493331, −4.332654765215366, −3.363981182403311, −2.958776849379173, −2.383248287999147, −1.764354474593499, −0.5106769150144708, 0, 0.5106769150144708, 1.764354474593499, 2.383248287999147, 2.958776849379173, 3.363981182403311, 4.332654765215366, 4.807032794493331, 5.670561088659953, 6.162069371899253, 6.526142260465134, 7.176875776593321, 7.731320634207664, 8.202702685613629, 8.748807900911145, 9.313594210491254, 9.780146483997845, 10.35741231898311, 10.57987561335754, 11.04573920973280, 11.89618835148040, 12.38971303498985, 12.72821768305575, 13.31435576264192, 13.59315322474563, 14.28582554621035

Graph of the $Z$-function along the critical line