| L(s) = 1 | + 2-s + 3-s − 4-s + 2·5-s + 6-s − 3·8-s + 9-s + 2·10-s − 12-s + 2·13-s + 2·15-s − 16-s − 17-s + 18-s − 8·19-s − 2·20-s − 8·23-s − 3·24-s − 25-s + 2·26-s + 27-s − 6·29-s + 2·30-s + 8·31-s + 5·32-s − 34-s − 36-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.894·5-s + 0.408·6-s − 1.06·8-s + 1/3·9-s + 0.632·10-s − 0.288·12-s + 0.554·13-s + 0.516·15-s − 1/4·16-s − 0.242·17-s + 0.235·18-s − 1.83·19-s − 0.447·20-s − 1.66·23-s − 0.612·24-s − 1/5·25-s + 0.392·26-s + 0.192·27-s − 1.11·29-s + 0.365·30-s + 1.43·31-s + 0.883·32-s − 0.171·34-s − 1/6·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 3 | \( 1 - T \) | |
| 11 | \( 1 \) | |
| 17 | \( 1 + T \) | |
| good | 2 | \( 1 - T + p T^{2} \) | 1.2.ab |
| 5 | \( 1 - 2 T + p T^{2} \) | 1.5.ac |
| 7 | \( 1 + p T^{2} \) | 1.7.a |
| 13 | \( 1 - 2 T + p T^{2} \) | 1.13.ac |
| 19 | \( 1 + 8 T + p T^{2} \) | 1.19.i |
| 23 | \( 1 + 8 T + p T^{2} \) | 1.23.i |
| 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g |
| 31 | \( 1 - 8 T + p T^{2} \) | 1.31.ai |
| 37 | \( 1 - 6 T + p T^{2} \) | 1.37.ag |
| 41 | \( 1 + 2 T + p T^{2} \) | 1.41.c |
| 43 | \( 1 + 8 T + p T^{2} \) | 1.43.i |
| 47 | \( 1 + 4 T + p T^{2} \) | 1.47.e |
| 53 | \( 1 - 6 T + p T^{2} \) | 1.53.ag |
| 59 | \( 1 + 8 T + p T^{2} \) | 1.59.i |
| 61 | \( 1 + 10 T + p T^{2} \) | 1.61.k |
| 67 | \( 1 - 4 T + p T^{2} \) | 1.67.ae |
| 71 | \( 1 + p T^{2} \) | 1.71.a |
| 73 | \( 1 - 10 T + p T^{2} \) | 1.73.ak |
| 79 | \( 1 + p T^{2} \) | 1.79.a |
| 83 | \( 1 + 12 T + p T^{2} \) | 1.83.m |
| 89 | \( 1 + 14 T + p T^{2} \) | 1.89.o |
| 97 | \( 1 + 14 T + p T^{2} \) | 1.97.o |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.008303363062750045123239248310, −6.65178501385432108721613477882, −6.18082386205992239927120881427, −5.64427440780023395965100881152, −4.58839376670407409795118546504, −4.15398767878365248190008955032, −3.33121258186201289944688805857, −2.37838817575559099972064141148, −1.66480247340214444483922276384, 0,
1.66480247340214444483922276384, 2.37838817575559099972064141148, 3.33121258186201289944688805857, 4.15398767878365248190008955032, 4.58839376670407409795118546504, 5.64427440780023395965100881152, 6.18082386205992239927120881427, 6.65178501385432108721613477882, 8.008303363062750045123239248310