Properties

Label 2-6171-1.1-c1-0-267
Degree $2$
Conductor $6171$
Sign $-1$
Analytic cond. $49.2756$
Root an. cond. $7.01966$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 2·5-s + 6-s − 3·8-s + 9-s + 2·10-s − 12-s + 2·13-s + 2·15-s − 16-s − 17-s + 18-s − 8·19-s − 2·20-s − 8·23-s − 3·24-s − 25-s + 2·26-s + 27-s − 6·29-s + 2·30-s + 8·31-s + 5·32-s − 34-s − 36-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.894·5-s + 0.408·6-s − 1.06·8-s + 1/3·9-s + 0.632·10-s − 0.288·12-s + 0.554·13-s + 0.516·15-s − 1/4·16-s − 0.242·17-s + 0.235·18-s − 1.83·19-s − 0.447·20-s − 1.66·23-s − 0.612·24-s − 1/5·25-s + 0.392·26-s + 0.192·27-s − 1.11·29-s + 0.365·30-s + 1.43·31-s + 0.883·32-s − 0.171·34-s − 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6171\)    =    \(3 \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(49.2756\)
Root analytic conductor: \(7.01966\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6171,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
11 \( 1 \)
17 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.008303363062750045123239248310, −6.65178501385432108721613477882, −6.18082386205992239927120881427, −5.64427440780023395965100881152, −4.58839376670407409795118546504, −4.15398767878365248190008955032, −3.33121258186201289944688805857, −2.37838817575559099972064141148, −1.66480247340214444483922276384, 0, 1.66480247340214444483922276384, 2.37838817575559099972064141148, 3.33121258186201289944688805857, 4.15398767878365248190008955032, 4.58839376670407409795118546504, 5.64427440780023395965100881152, 6.18082386205992239927120881427, 6.65178501385432108721613477882, 8.008303363062750045123239248310

Graph of the $Z$-function along the critical line