Show commands: SageMath
Rank
The elliptic curves in class 6171.g have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 6171.g do not have complex multiplication.Modular form 6171.2.a.g
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 6171.g
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 6171.g1 | 6171d3 | \([1, 0, 1, -22025, 1251743]\) | \(666940371553/2756193\) | \(4882764027273\) | \([2]\) | \(15360\) | \(1.2900\) | |
| 6171.g2 | 6171d2 | \([1, 0, 1, -2060, -2059]\) | \(545338513/314721\) | \(557547449481\) | \([2, 2]\) | \(7680\) | \(0.94343\) | |
| 6171.g3 | 6171d1 | \([1, 0, 1, -1455, -21419]\) | \(192100033/561\) | \(993845721\) | \([2]\) | \(3840\) | \(0.59686\) | \(\Gamma_0(N)\)-optimal |
| 6171.g4 | 6171d4 | \([1, 0, 1, 8225, -14401]\) | \(34741712447/20160657\) | \(-35715833675577\) | \([2]\) | \(15360\) | \(1.2900\) |