Properties

Label 2-54080-1.1-c1-0-32
Degree $2$
Conductor $54080$
Sign $-1$
Analytic cond. $431.830$
Root an. cond. $20.7805$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·7-s − 3·9-s + 3·11-s − 4·17-s − 7·19-s − 4·23-s + 25-s + 8·29-s − 10·31-s + 3·35-s − 3·37-s − 2·41-s − 6·43-s + 3·45-s − 47-s + 2·49-s + 9·53-s − 3·55-s + 4·59-s + 14·61-s + 9·63-s − 4·67-s + 6·71-s + 4·73-s − 9·77-s + 10·79-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.13·7-s − 9-s + 0.904·11-s − 0.970·17-s − 1.60·19-s − 0.834·23-s + 1/5·25-s + 1.48·29-s − 1.79·31-s + 0.507·35-s − 0.493·37-s − 0.312·41-s − 0.914·43-s + 0.447·45-s − 0.145·47-s + 2/7·49-s + 1.23·53-s − 0.404·55-s + 0.520·59-s + 1.79·61-s + 1.13·63-s − 0.488·67-s + 0.712·71-s + 0.468·73-s − 1.02·77-s + 1.12·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54080\)    =    \(2^{6} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(431.830\)
Root analytic conductor: \(20.7805\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 54080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.59477800072603, −14.32311014031272, −13.62212228391618, −13.11189260013583, −12.67977368834449, −12.09433511605143, −11.67600112042171, −11.16986227515750, −10.53792747758207, −10.15607797219728, −9.391160326460071, −8.928463496476883, −8.495674062888970, −8.112630788684683, −7.095499916087887, −6.683178583919961, −6.348117221848471, −5.746410987222287, −4.993155455441237, −4.281549714817078, −3.678062992770176, −3.343102825262914, −2.367672384779636, −1.978029075079015, −0.6552508418354983, 0, 0.6552508418354983, 1.978029075079015, 2.367672384779636, 3.343102825262914, 3.678062992770176, 4.281549714817078, 4.993155455441237, 5.746410987222287, 6.348117221848471, 6.683178583919961, 7.095499916087887, 8.112630788684683, 8.495674062888970, 8.928463496476883, 9.391160326460071, 10.15607797219728, 10.53792747758207, 11.16986227515750, 11.67600112042171, 12.09433511605143, 12.67977368834449, 13.11189260013583, 13.62212228391618, 14.32311014031272, 14.59477800072603

Graph of the $Z$-function along the critical line