Properties

Label 1.7.d
Base field $\F_{7}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Learn more about

Invariants

Base field:  $\F_{7}$
Dimension:  $1$
L-polynomial:  $1 + 3 x + 7 x^{2}$
Frobenius angles:  $\pm0.691875465479$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-19}) \)
Galois group:  $C_2$
Jacobians:  1

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $11$ $55$ $308$ $2475$ $16841$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $11$ $55$ $308$ $2475$ $16841$ $117040$ $825143$ $5764275$ $40343996$ $282507775$

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-19}) \).
All geometric endomorphisms are defined over $\F_{7}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension degreeCommon base change
1.7.ad$2$1.49.f