Properties

Label 2-47600-1.1-c1-0-26
Degree $2$
Conductor $47600$
Sign $-1$
Analytic cond. $380.087$
Root an. cond. $19.4958$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 3·9-s − 2·11-s − 17-s + 6·19-s + 8·37-s + 6·41-s − 12·43-s − 4·47-s + 49-s + 6·53-s − 6·59-s − 2·61-s − 3·63-s − 8·67-s + 6·73-s − 2·77-s + 9·81-s − 6·83-s − 6·89-s + 2·97-s + 6·99-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.377·7-s − 9-s − 0.603·11-s − 0.242·17-s + 1.37·19-s + 1.31·37-s + 0.937·41-s − 1.82·43-s − 0.583·47-s + 1/7·49-s + 0.824·53-s − 0.781·59-s − 0.256·61-s − 0.377·63-s − 0.977·67-s + 0.702·73-s − 0.227·77-s + 81-s − 0.658·83-s − 0.635·89-s + 0.203·97-s + 0.603·99-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47600\)    =    \(2^{4} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(380.087\)
Root analytic conductor: \(19.4958\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 47600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.90973683856388, −14.25770251066893, −13.84937766552049, −13.35466455141485, −12.87870214441432, −12.12695073519960, −11.69818646270651, −11.27905988630530, −10.80361195076023, −10.15747780292828, −9.583617700282766, −9.116655215395745, −8.434606980973533, −8.006007103486963, −7.529762460230539, −6.888954226471196, −6.139859465343153, −5.666055670227400, −5.103039480550240, −4.607947406403281, −3.776416267948153, −3.030278940978963, −2.656010986037446, −1.780713923562561, −0.9286558041607949, 0, 0.9286558041607949, 1.780713923562561, 2.656010986037446, 3.030278940978963, 3.776416267948153, 4.607947406403281, 5.103039480550240, 5.666055670227400, 6.139859465343153, 6.888954226471196, 7.529762460230539, 8.006007103486963, 8.434606980973533, 9.116655215395745, 9.583617700282766, 10.15747780292828, 10.80361195076023, 11.27905988630530, 11.69818646270651, 12.12695073519960, 12.87870214441432, 13.35466455141485, 13.84937766552049, 14.25770251066893, 14.90973683856388

Graph of the $Z$-function along the critical line