Properties

Label 2-465-1.1-c1-0-14
Degree $2$
Conductor $465$
Sign $-1$
Analytic cond. $3.71304$
Root an. cond. $1.92692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s + 5-s − 6-s − 4·7-s + 3·8-s + 9-s − 10-s − 4·11-s − 12-s + 2·13-s + 4·14-s + 15-s − 16-s − 6·17-s − 18-s − 4·19-s − 20-s − 4·21-s + 4·22-s + 3·24-s + 25-s − 2·26-s + 27-s + 4·28-s − 6·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s − 0.408·6-s − 1.51·7-s + 1.06·8-s + 1/3·9-s − 0.316·10-s − 1.20·11-s − 0.288·12-s + 0.554·13-s + 1.06·14-s + 0.258·15-s − 1/4·16-s − 1.45·17-s − 0.235·18-s − 0.917·19-s − 0.223·20-s − 0.872·21-s + 0.852·22-s + 0.612·24-s + 1/5·25-s − 0.392·26-s + 0.192·27-s + 0.755·28-s − 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(465\)    =    \(3 \cdot 5 \cdot 31\)
Sign: $-1$
Analytic conductor: \(3.71304\)
Root analytic conductor: \(1.92692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 465,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 - T \)
31 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26272008989189304077761027502, −9.619881912622415673569211765264, −8.894003158767714592279341847617, −8.161265561981018255582993597565, −7.02137188315382950394322884244, −6.06865597150852415394362452213, −4.69288327276767791313809475264, −3.47701333779520587015827014256, −2.17254925636267642483655615973, 0, 2.17254925636267642483655615973, 3.47701333779520587015827014256, 4.69288327276767791313809475264, 6.06865597150852415394362452213, 7.02137188315382950394322884244, 8.161265561981018255582993597565, 8.894003158767714592279341847617, 9.619881912622415673569211765264, 10.26272008989189304077761027502

Graph of the $Z$-function along the critical line