Properties

Label 465.a
Number of curves $4$
Conductor $465$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 465.a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(31\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 465.a do not have complex multiplication.

Modular form 465.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} + q^{5} - q^{6} - 4 q^{7} + 3 q^{8} + q^{9} - q^{10} - 4 q^{11} - q^{12} + 2 q^{13} + 4 q^{14} + q^{15} - q^{16} - 6 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 465.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
465.a1 465b3 \([1, 0, 0, -170, 837]\) \(543538277281/1569375\) \(1569375\) \([4]\) \(128\) \(0.059784\)  
465.a2 465b2 \([1, 0, 0, -15, 0]\) \(374805361/216225\) \(216225\) \([2, 2]\) \(64\) \(-0.28679\)  
465.a3 465b1 \([1, 0, 0, -10, -13]\) \(111284641/465\) \(465\) \([2]\) \(32\) \(-0.63336\) \(\Gamma_0(N)\)-optimal
465.a4 465b4 \([1, 0, 0, 60, 15]\) \(23862997439/13852815\) \(-13852815\) \([2]\) \(128\) \(0.059784\)